Advanced Search
MyIDEAS: Login

Stock index forecasting based on a hybrid model

Contents:

Author Info

  • Wang, Ju-Jie
  • Wang, Jian-Zhou
  • Zhang, Zhe-George
  • Guo, Shu-Po
Registered author(s):

    Abstract

    Forecasting the stock market price index is a challenging task. The exponential smoothing model (ESM), autoregressive integrated moving average model (ARIMA), and the back propagation neural network (BPNN) can be used to make forecasts based on time series. In this paper, a hybrid approach combining ESM, ARIMA, and BPNN is proposed to be the most advantageous of all three models. The weight of the proposed hybrid model (PHM) is determined by genetic algorithm (GA). The closing of the Shenzhen Integrated Index (SZII) and opening of the Dow Jones Industrial Average Index (DJIAI) are used as illustrative examples to evaluate the performances of the PHM. Numerical results show that the proposed model outperforms all traditional models, including ESM, ARIMA, BPNN, the equal weight hybrid model (EWH), and the random walk model (RWM).

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0305048311001435
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Omega.

    Volume (Year): 40 (2012)
    Issue (Month): 6 ()
    Pages: 758-766

    as in new window
    Handle: RePEc:eee:jomega:v:40:y:2012:i:6:p:758-766

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=375&ref=375_01_ooc_1&version=01

    Related research

    Keywords: Stock price; Forecasting; Exponential smoothing; ARIMA; BPNN; Genetic algorithm; Hybrid model;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Doyle, John R. & Chen, Catherine H., 2013. "Patterns in stock market movements tested as random number generators," European Journal of Operational Research, Elsevier, vol. 227(1), pages 122-132.
    2. Zhao, Weigang & Wang, Jianzhou & Lu, Haiyan, 2014. "Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model," Omega, Elsevier, vol. 45(C), pages 80-91.
    3. Sermpinis, Georgios & Theofilatos, Konstantinos & Karathanasopoulos, Andreas & Georgopoulos, Efstratios F. & Dunis, Christian, 2013. "Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and Particle Swarm Optimization," European Journal of Operational Research, Elsevier, vol. 225(3), pages 528-540.
    4. Nazarian, Rafik & Gandali Alikhani, Nadiya & Naderi, Esmaeil & Amiri, Ashkan, 2013. "Forecasting Stock Market Volatility: A Forecast Combination Approach," MPRA Paper 46786, University Library of Munich, Germany.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:40:y:2012:i:6:p:758-766. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.