IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v73y2019i4d10.1007_s10640-018-0297-x.html
   My bibliography  Save this article

Active Learning and Optimal Climate Policy

Author

Listed:
  • In Chang Hwang

    (The Seoul Institute)

  • Richard S. J. Tol

    (University of Sussex
    VU University Amsterdam
    VU University Amsterdam
    Tinbergen Institute)

  • Marjan W. Hofkes

    (VU University Amsterdam
    VU University Amsterdam)

Abstract

This paper develops a climate-economy model with uncertainty, irreversibility, and active learning. Whereas previous papers assume learning from one observation per period, or experiment with control variables to gain additional information, this paper considers active learning from investment in monitoring, specifically in improved observations of the global mean temperature. We find that the decision maker invests a significant amount of money in climate research, far more than the current level, in order to increase the rate of learning about climate change. This helps the decision maker make improved decisions. The level of uncertainty decreases more rapidly in the active learning model than in the passive learning model with only temperature observations. As the uncertainty about climate change is smaller, active learning reduces the optimal carbon tax. The greater the risk, the larger is the effect of learning. The method proposed here is applicable to any dynamic control problem where the quality of monitoring is a choice variable, for instance, the precision at which we observe GDP, unemployment, or the quality of education.

Suggested Citation

  • In Chang Hwang & Richard S. J. Tol & Marjan W. Hofkes, 2019. "Active Learning and Optimal Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1237-1264, August.
  • Handle: RePEc:kap:enreec:v:73:y:2019:i:4:d:10.1007_s10640-018-0297-x
    DOI: 10.1007/s10640-018-0297-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10640-018-0297-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10640-018-0297-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kolstad, Charles D., 1996. "Learning and Stock Effects in Environmental Regulation: The Case of Greenhouse Gas Emissions," Journal of Environmental Economics and Management, Elsevier, vol. 31(1), pages 1-18, July.
    2. Horowitz, John & Lange, Andreas, 2014. "Cost–benefit analysis under uncertainty — A note on Weitzman's dismal theorem," Energy Economics, Elsevier, vol. 42(C), pages 201-203.
    3. Yetman, James, 2003. "Probing potential output: Monetary policy, credibility, and optimal learning under uncertainty," Journal of Macroeconomics, Elsevier, vol. 25(3), pages 311-330, September.
    4. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2011. "Numerically stable and accurate stochastic simulation approaches for solving dynamic economic models," Quantitative Economics, Econometric Society, vol. 2(2), pages 173-210, July.
    5. van Wijnbergen, Sweder & Willems, Tim, 2015. "Optimal learning on climate change: Why climate skeptics should reduce emissions," Journal of Environmental Economics and Management, Elsevier, vol. 70(C), pages 17-33.
    6. Antony Millner, 2013. "On Welfare Frameworks and Catastrophic Climate Risks," CESifo Working Paper Series 4442, CESifo.
    7. Reto Knutti & Thomas F. Stocker & Fortunat Joos & Gian-Kasper Plattner, 2002. "Constraints on radiative forcing and future climate change from observations and climate model ensembles," Nature, Nature, vol. 416(6882), pages 719-723, April.
    8. Marcoul, Philippe & Weninger, Quinn, 2008. "Search and active learning with correlated information: Empirical evidence from mid-Atlantic clam fishermen," Journal of Economic Dynamics and Control, Elsevier, vol. 32(6), pages 1921-1948, June.
    9. Nadiri, M Ishaq & Prucha, Ingmar R, 1996. "Estimation of the Depreciation Rate of Physical and R&D Capital in the U.S. Total Manufacturing Sector," Economic Inquiry, Western Economic Association International, vol. 34(1), pages 43-56, January.
    10. Bertocchi, Graziella & Spagat, Michael, 1993. "Learning, experimentation, and monetary policy," Journal of Monetary Economics, Elsevier, vol. 32(1), pages 169-183, August.
    11. Derek Lemoine & Christian Traeger, 2014. "Watch Your Step: Optimal Policy in a Tipping Climate," American Economic Journal: Economic Policy, American Economic Association, vol. 6(1), pages 137-166, February.
    12. Beck, Gunter W. & Wieland, Volker, 2002. "Learning and control in a changing economic environment," Journal of Economic Dynamics and Control, Elsevier, vol. 26(9-10), pages 1359-1377, August.
    13. Gollier, Christian & Jullien, Bruno & Treich, Nicolas, 2000. "Scientific progress and irreversibility: an economic interpretation of the 'Precautionary Principle'," Journal of Public Economics, Elsevier, vol. 75(2), pages 229-253, February.
    14. Kelly, David L. & Tan, Zhuo, 2015. "Learning and climate feedbacks: Optimal climate insurance and fat tails," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 98-122.
    15. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    16. Charles Kolstad & Alistair Ulph, 2011. "Uncertainty, Learning and Heterogeneity in International Environmental Agreements," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 50(3), pages 389-403, November.
    17. Hall, Bronwyn H. & Mairesse, Jacques & Mohnen, Pierre, 2010. "Measuring the Returns to R&D," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1033-1082, Elsevier.
    18. Kolstad, Charles D., 1996. "Fundamental irreversibilities in stock externalities," Journal of Public Economics, Elsevier, vol. 60(2), pages 221-233, May.
    19. Alistair Ulph & David Ulph, "undated". "Global Warming, Irreversibility And Learning," ELSE working papers 056, ESRC Centre on Economics Learning and Social Evolution.
    20. In Hwang & Frédéric Reynès & Richard Tol, 2013. "Climate Policy Under Fat-Tailed Risk: An Application of Dice," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 415-436, November.
    21. Wendy C. Y. Li & Bronwyn H. Hall, 2020. "Depreciation of Business R&D Capital," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(1), pages 161-180, March.
    22. Leach, Andrew J., 2007. "The climate change learning curve," Journal of Economic Dynamics and Control, Elsevier, vol. 31(5), pages 1728-1752, May.
    23. Martin L. Weitzman, 2012. "GHG Targets as Insurance Against Catastrophic Climate Damages," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 14(2), pages 221-244, March.
    24. Kendrick, David, 1982. "Caution and probing in a macroeconomic model," Journal of Economic Dynamics and Control, Elsevier, vol. 4(1), pages 149-170, November.
    25. Alan Manne & Richard Richels, 1992. "Buying Greenhouse Insurance: The Economic Costs of CO2 Emission Limits," MIT Press Books, The MIT Press, edition 1, volume 1, number 026213280x, December.
    26. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    27. Cyert, Richard M & DeGroot, Morris H, 1974. "Rational Expectations and Bayesian Analysis," Journal of Political Economy, University of Chicago Press, vol. 82(3), pages 521-536, May/June.
    28. Thomas Sterner & U. Martin Persson, 2008. "An Even Sterner Review: Introducing Relative Prices into the Discounting Debate," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 2(1), pages 61-76, Winter.
    29. Millner, Antony, 2013. "On welfare frameworks and catastrophic climate risks," Journal of Environmental Economics and Management, Elsevier, vol. 65(2), pages 310-325.
    30. Rudik, Ivan, 2016. "Optimal Climate Policy When Damages are Unknown," ISU General Staff Papers 201611130800001011, Iowa State University, Department of Economics.
    31. Luke G. Fitzpatrick & David L. Kelly, 2017. "Probabilistic Stabilization Targets," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(2), pages 611-657.
    32. Karp, Larry & Zhang, Jiangfeng, 2006. "Regulation with anticipated learning about environmental damages," Journal of Environmental Economics and Management, Elsevier, vol. 51(3), pages 259-279, May.
    33. Hwang, In Chang & Tol, Richard S.J. & Hofkes, Marjan W., 2016. "Fat-tailed risk about climate change and climate policy," Energy Policy, Elsevier, vol. 89(C), pages 25-35.
    34. William D. Nordhaus & David Popp, 1997. "What is the Value of Scientific Knowledge? An Application to Global Warming Using the PRICE Model," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 1-45.
    35. Ulph, Alistair & Ulph, David, 1997. "Global Warming, Irreversibility and Learning," Economic Journal, Royal Economic Society, vol. 107(442), pages 636-650, May.
    36. Peck, Stephen C. & Teisberg, Thomas J., 1993. "Global warming uncertainties and the value of information: an analysis using CETA," Resource and Energy Economics, Elsevier, vol. 15(1), pages 71-97, March.
    37. Elizabeth Chase MacRae, 1972. "Linear Decision with Experimentation," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 1, number 4, pages 437-447, National Bureau of Economic Research, Inc.
    38. Mort Webster, 2002. "The Curious Role of "Learning" in Climate Policy: Should We Wait for More Data?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 97-119.
    39. In Chang Hwang, 2017. "A Recursive Method for Solving a Climate–Economy Model: Value Function Iterations with Logarithmic Approximations," Computational Economics, Springer;Society for Computational Economics, vol. 50(1), pages 95-110, June.
    40. Kelly, David L. & Kolstad, Charles D., 1999. "Bayesian learning, growth, and pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 23(4), pages 491-518, February.
    41. Johnson, Timothy C., 2007. "Optimal learning and new technology bubbles," Journal of Monetary Economics, Elsevier, vol. 54(8), pages 2486-2511, November.
    42. Hwang, In Chang & Reynès, Frédéric & Tol, Richard S.J., 2017. "The effect of learning on climate policy under fat-tailed risk," Resource and Energy Economics, Elsevier, vol. 48(C), pages 1-18.
    43. Prescott, Edward C, 1972. "The Multi-Period Control Problem Under Uncertainty," Econometrica, Econometric Society, vol. 40(6), pages 1043-1058, November.
    44. Kendrick, David A., 2005. "Stochastic control for economic models: past, present and the paths ahead," Journal of Economic Dynamics and Control, Elsevier, vol. 29(1-2), pages 3-30, January.
    45. Yaakov Bar-Shalom & Edison Tse, 1976. "Caution, Probing, and the Value of Information in the Control of Uncertain Systems," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 3, pages 323-337, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Anthoff & Richard S. J. Tol, 2022. "Testing the Dismal Theorem," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 9(5), pages 885-920.
    2. Karunanayake, N. & Aimmanee, P. & Lohitvisate, W. & Makhanov, S.S., 2020. "Particle method for segmentation of breast tumors in ultrasound images," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 257-284.
    3. Lei, Nuoa & Masanet, Eric, 2020. "Statistical analysis for predicting location-specific data center PUE and its improvement potential," Energy, Elsevier, vol. 201(C).
    4. Lee, Dong-Young & Mehran, Muhammad Taqi & Kim, Jonghwan & Kim, Sangcho & Lee, Seung-Bok & Song, Rak-Hyun & Ko, Eun-Yong & Hong, Jong-Eun & Huh, Joo-Youl & Lim, Tak-Hyoung, 2020. "Scaling up syngas production with controllable H2/CO ratio in a highly efficient, compact, and durable solid oxide coelectrolysis cell unit-bundle," Applied Energy, Elsevier, vol. 257(C).
    5. Pollard, Ciarán P. & Griffin, Christine T. & Andrade Moral, Rafael de & Duffy, Catriona & Chuche, Julien & Gaffney, Michael T. & Fealy, Reamonn M. & Fealy, Rowan, 2020. "phenModel: A temperature-dependent phenology/voltinism model for a herbivorous insect incorporating facultative diapause and budburst," Ecological Modelling, Elsevier, vol. 416(C).
    6. Vogt, Christine A. & Andereck, Kathleen L. & Pham, Kim, 2020. "Designing for quality of life and sustainability," Annals of Tourism Research, Elsevier, vol. 83(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. In Chang Hwang, 2016. "Active learning and optimal climate policy," EcoMod2016 9611, EcoMod.
    2. Hwang, In Chang & Reynès, Frédéric & Tol, Richard S.J., 2017. "The effect of learning on climate policy under fat-tailed risk," Resource and Energy Economics, Elsevier, vol. 48(C), pages 1-18.
    3. In Chang Hwang & Richard S.J. Tol & Marjan W. Hofkes, 2013. "Active Learning about Climate Change," Working Paper Series 6513, Department of Economics, University of Sussex Business School.
    4. Richard S. J. Tol & In Chang Hwang & Frédéric Reynès, 2012. "The Effect of Learning on Climate Policy under Fat-tailed Uncertainty," Working Paper Series 5312, Department of Economics, University of Sussex Business School.
    5. Hwang, In Chang, 2014. "Fat-tailed uncertainty and the learning-effect," MPRA Paper 53671, University Library of Munich, Germany.
    6. W. Botzen & Jeroen Bergh, 2014. "Specifications of Social Welfare in Economic Studies of Climate Policy: Overview of Criteria and Related Policy Insights," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 1-33, May.
    7. Cunha-e-Sa, Maria A. & Santos, Vasco, 2008. "Experimentation with accumulation," Journal of Economic Dynamics and Control, Elsevier, vol. 32(2), pages 470-496, February.
    8. Maria Antonieta Cunha-e-Sa & Vasco Santos, 2007. "Experimentation with accumulation," Nova SBE Working Paper Series wp503, Universidade Nova de Lisboa, Nova School of Business and Economics.
    9. Ahlvik, Lassi & Iho, Antti, 2018. "Optimal geoengineering experiments," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 148-168.
    10. van Wijnbergen, Sweder & Willems, Tim, 2015. "Optimal learning on climate change: Why climate skeptics should reduce emissions," Journal of Environmental Economics and Management, Elsevier, vol. 70(C), pages 17-33.
    11. Hwang, In Chang & Tol, Richard S.J. & Hofkes, Marjan W., 2016. "Fat-tailed risk about climate change and climate policy," Energy Policy, Elsevier, vol. 89(C), pages 25-35.
    12. Karp, Larry & Zhang, Jiangfeng, 2001. "Bayesian Learning and the Regulation of Greenhouse Gas Emissions," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt2fr0783c, Department of Agricultural & Resource Economics, UC Berkeley.
    13. Lontzek, Thomas S. & Narita, Daiju, 2009. "The effect of uncertainty on decision making about climate change mitigation: a numerical approach of stochastic control," Kiel Working Papers 1539, Kiel Institute for the World Economy (IfW Kiel).
    14. Leach, Andrew J., 2007. "The climate change learning curve," Journal of Economic Dynamics and Control, Elsevier, vol. 31(5), pages 1728-1752, May.
    15. David Anthoff & Richard S. J. Tol, 2022. "Testing the Dismal Theorem," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 9(5), pages 885-920.
    16. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    17. Alistair Ulph & Pedro Pintassilgo & Michael Finus, 2019. "Uncertainty, Learning and International Environmental Agreements: The Role of Risk Aversion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1165-1196, August.
    18. Edilio Valentini & Paolo Vitale, 2019. "Optimal Climate Policy for a Pessimistic Social Planner," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 411-443, February.
    19. Samuel Jovan Okullo, 2020. "Determining the Social Cost of Carbon: Under Damage and Climate Sensitivity Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(1), pages 79-103, January.
    20. Peterson, Sonja, 2006. "Uncertainty and economic analysis of climate change: a survey of approaches and findings," Open Access Publications from Kiel Institute for the World Economy 3778, Kiel Institute for the World Economy (IfW Kiel).

    More about this item

    Keywords

    Climate policy; Irreversibility; Uncertainty; Learning; Active learning;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:73:y:2019:i:4:d:10.1007_s10640-018-0297-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.