IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5392-d271967.html
   My bibliography  Save this article

Scenario Analysis on Energy Consumption and CO 2 Emissions Reduction Potential in Building Heating Sector at Community Level

Author

Listed:
  • Chuan Tian

    (School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, Liaoning, China)

  • Guohui Feng

    (School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, Liaoning, China)

  • Shuai Li

    (State Grid Liaoning Electric Power Company Limited Economic Research Institute, Shenyang 110168, Liaoning, China)

  • Fuqiang Xu

    (Shaanxi Country Garden Real Estate Co. Ltd, Xi’an 727400, Shaanxi, China)

Abstract

Energy consumption and carbon emissions of building heating are increasing rapidly. Taking Liaobin coastal economic zone as an example, two scenarios are built to analyze the potential of energy consumption and CO 2 emissions reduction from the aspects of laws, regulations, policies and planning. The baseline scenario refers to the traditional way of energy planning and the community energy planning scenario seeks to apply community energy planning within the zone. Energy consumption and CO 2 emission are forecast in two scenarios with the driving factors including GDP growth, changes in population size, energy structure adjustment, energy technology progress, and increase of energy efficiency. To improve accuracy of future GDP and population data prediction, an ARIMA (Autoregressive Integrated Moving Average model) (1,1,1) model is introduced into GDP prediction and a logistics model is introduced into population prediction. Results show that compared with the baseline scenario, energy consumption levels in the community energy planning scenario are reduced by 140% and CO 2 emission levels are reduced by 45%; the short-term and long-term driving factors are analyzed. Policy implications are given for energy conservation and environmental protection.

Suggested Citation

  • Chuan Tian & Guohui Feng & Shuai Li & Fuqiang Xu, 2019. "Scenario Analysis on Energy Consumption and CO 2 Emissions Reduction Potential in Building Heating Sector at Community Level," Sustainability, MDPI, vol. 11(19), pages 1-26, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5392-:d:271967
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5392/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5392/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Wenjia & Wang, Can & Chen, Jining & Wang, Ke & Zhang, Ying & Lu, Xuedu, 2008. "Comparison of CO2 emission scenarios and mitigation opportunities in China's five sectors in 2020," Energy Policy, Elsevier, vol. 36(3), pages 1181-1194, March.
    2. Koroneos, C. & Zairis, N. & Charaklias, P. & Moussiopoulos, N., 2005. "Optimization of energy production system in the Dodecanese Islands," Renewable Energy, Elsevier, vol. 30(2), pages 195-210.
    3. Ghanadan, Rebecca & Koomey, Jonathan G., 2005. "Using energy scenarios to explore alternative energy pathways in California," Energy Policy, Elsevier, vol. 33(9), pages 1117-1142, June.
    4. Zeng, Jingjing & Liu, Ting & Feiock, Richard & Li, Fei, 2019. "The impacts of China's provincial energy policies on major air pollutants: A spatial econometric analysis," Energy Policy, Elsevier, vol. 132(C), pages 392-403.
    5. Liu, Hengwei & Gallagher, Kelly Sims, 2010. "Catalyzing strategic transformation to a low-carbon economy: A CCS roadmap for China," Energy Policy, Elsevier, vol. 38(1), pages 59-74, January.
    6. Shin, Ho-Chul & Park, Jin-Won & Kim, Ho-Seok & Shin, Eui-Soon, 2005. "Environmental and economic assessment of landfill gas electricity generation in Korea using LEAP model," Energy Policy, Elsevier, vol. 33(10), pages 1261-1270, July.
    7. Emodi, Nnaemeka Vincent & Emodi, Chinenye Comfort & Murthy, Girish Panchakshara & Emodi, Adaeze Saratu Augusta, 2017. "Energy policy for low carbon development in Nigeria: A LEAP model application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 247-261.
    8. Wang, Yanjia & Gu, Alun & Zhang, Aling, 2011. "Recent development of energy supply and demand in China, and energy sector prospects through 2030," Energy Policy, Elsevier, vol. 39(11), pages 6745-6759.
    9. Zhang, Qingyu & Weili, Tian & Yumei, Wei & Yingxu, Chen, 2007. "External costs from electricity generation of China up to 2030 in energy and abatement scenarios," Energy Policy, Elsevier, vol. 35(8), pages 4295-4304, August.
    10. Dagoumas, [alpha].S. & Barker, T.S., 2010. "Pathways to a low-carbon economy for the UK with the macro-econometric E3MG model," Energy Policy, Elsevier, vol. 38(6), pages 3067-3077, June.
    11. Lin, Jianyi & Cao, Bin & Cui, Shenghui & Wang, Wei & Bai, Xuemei, 2010. "Evaluating the effectiveness of urban energy conservation and GHG mitigation measures: The case of Xiamen city, China," Energy Policy, Elsevier, vol. 38(9), pages 5123-5132, September.
    12. Quadrelli, Roberta & Peterson, Sierra, 2007. "The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion," Energy Policy, Elsevier, vol. 35(11), pages 5938-5952, November.
    13. Shabbir, Rabia & Ahmad, Sheikh Saeed, 2010. "Monitoring urban transport air pollution and energy demand in Rawalpindi and Islamabad using leap model," Energy, Elsevier, vol. 35(5), pages 2323-2332.
    14. Limmeechokchai, Bundit & Chawana, Saichit, 2007. "Sustainable energy development strategies in the rural Thailand: The case of the improved cooking stove and the small biogas digester," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 818-837, June.
    15. Huang, Yophy & Bor, Yunchang Jeffrey & Peng, Chieh-Yu, 2011. "The long-term forecast of Taiwan’s energy supply and demand: LEAP model application," Energy Policy, Elsevier, vol. 39(11), pages 6790-6803.
    16. Ates, Seyithan A., 2015. "Energy efficiency and CO2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system," Energy, Elsevier, vol. 90(P1), pages 417-428.
    17. Malla, Sunil, 2013. "Household energy consumption patterns and its environmental implications: Assessment of energy access and poverty in Nepal," Energy Policy, Elsevier, vol. 61(C), pages 990-1002.
    18. Dhakal, Shobhakar, 2003. "Implications of transportation policies on energy and environment in Kathmandu Valley, Nepal," Energy Policy, Elsevier, vol. 31(14), pages 1493-1507, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irene M. Zarco-Soto & Fco. Javier Zarco-Soto & Pedro J. Zarco-Periñán, 2021. "Influence of Population Income on Energy Consumption and CO 2 Emissions in Buildings of Cities," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    2. Emília Inês Come Zebra & Gilberto Mahumane & Federico Antonio Canu & Ana Cardoso, 2021. "Assessing the Greenhouse Gas Impact of a Renewable Energy Feed-in Tariff Policy in Mozambique: Towards NDC Ambition and Recommendations to Effectively Measure, Report, and Verify Its Implementation," Sustainability, MDPI, vol. 13(10), pages 1-21, May.
    3. Menegaki, Angeliki N. & Ahmad, Nisar & Aghdam, Reza FathollahZadeh & Naz, Amber, 2021. "The convergence in various dimensions of energy-economy-environment linkages: A comprehensive citation-based systematic literature review," Energy Economics, Elsevier, vol. 104(C).
    4. Pedro J. Zarco-Periñán & Fco Javier Zarco-Soto & Irene M. Zarco-Soto & José L. Martínez-Ramos & Rafael Sánchez-Durán, 2022. "CO 2 Emissions in Buildings: A Synopsis of Current Studies," Energies, MDPI, vol. 15(18), pages 1-10, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    2. Ahanchian, Mohammad & Biona, Jose Bienvenido Manuel, 2014. "Energy demand, emissions forecasts and mitigation strategies modeled over a medium-range horizon: The case of the land transportation sector in Metro Manila," Energy Policy, Elsevier, vol. 66(C), pages 615-629.
    3. Vicente Sebastian Espinoza & Veronica Guayanlema & Javier Mart nez-G mez, 2018. "Energy Efficiency Plan Benefits in Ecuador: Long-range Energy Alternative Planning Model," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 52-54.
    4. Emília Inês Come Zebra & Gilberto Mahumane & Federico Antonio Canu & Ana Cardoso, 2021. "Assessing the Greenhouse Gas Impact of a Renewable Energy Feed-in Tariff Policy in Mozambique: Towards NDC Ambition and Recommendations to Effectively Measure, Report, and Verify Its Implementation," Sustainability, MDPI, vol. 13(10), pages 1-21, May.
    5. Hasan Volkan Oral & Hasan Saygin, 2019. "Simulating the future energy consumption and greenhouse gas emissions of Turkish cement industry up to 2030 in a global context," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1461-1482, December.
    6. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
    7. Kadian, Rashmi & Dahiya, R.P. & Garg, H.P., 2007. "Energy-related emissions and mitigation opportunities from the household sector in Delhi," Energy Policy, Elsevier, vol. 35(12), pages 6195-6211, December.
    8. Lixiao Zhang & Yueyi Feng & Bin Chen, 2011. "Alternative Scenarios for the Development of a Low-Carbon City: A Case Study of Beijing, China," Energies, MDPI, vol. 4(12), pages 1-16, December.
    9. Hong, Jong Ho & Kim, Jitae & Son, Wonik & Shin, Heeyoung & Kim, Nahyun & Lee, Woong Ki & Kim, Jintae, 2019. "Long-term energy strategy scenarios for South Korea: Transition to a sustainable energy system," Energy Policy, Elsevier, vol. 127(C), pages 425-437.
    10. El-Sayed, Ahmed Hassan A. & Khalil, Adel & Yehia, Mohamed, 2023. "Modeling alternative scenarios for Egypt 2050 energy mix based on LEAP analysis," Energy, Elsevier, vol. 266(C).
    11. Yang, Dewei & Liu, Dandan & Huang, Anmin & Lin, Jianyi & Xu, Lingxing, 2021. "Critical transformation pathways and socio-environmental benefits of energy substitution using a LEAP scenario modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Park, Nyun-Bae & Yun, Sun-Jin & Jeon, Eui-Chan, 2013. "An analysis of long-term scenarios for the transition to renewable energy in the Korean electricity sector," Energy Policy, Elsevier, vol. 52(C), pages 288-296.
    13. Emodi, Nnaemeka Vincent & Emodi, Chinenye Comfort & Murthy, Girish Panchakshara & Emodi, Adaeze Saratu Augusta, 2017. "Energy policy for low carbon development in Nigeria: A LEAP model application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 247-261.
    14. McPherson, Madeleine & Karney, Bryan, 2014. "Long-term scenario alternatives and their implications: LEAP model application of Panama׳s electricity sector," Energy Policy, Elsevier, vol. 68(C), pages 146-157.
    15. M. AlSabbagh & Y. L. Siu & A. Guehnemann & J. Barrett, 2017. "Mitigation of CO2 emissions from the road passenger transport sector in Bahrain," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 99-119, January.
    16. Halkos, George & Tzeremes, Panagiotis, 2015. "Assessing greenhouse gas emissions in Estonia's energy system," MPRA Paper 66105, University Library of Munich, Germany.
    17. George Halkos & Nickolaos Tzeremes & Panayiotis Tzeremes, 2015. "A nonparametric approach for evaluating long-term energy policy scenarios: an application to the Greek energy system," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-14, December.
    18. Halkos, George & Tzeremes, Panagiotis, 2015. "Scenario analysis on greenhouse gas emissions reduction in Southeast Balkans' energy system," MPRA Paper 65280, University Library of Munich, Germany.
    19. Subramanyam, Veena & Kumar, Amit & Talaei, Alireza & Mondal, Md. Alam Hossain, 2017. "Energy efficiency improvement opportunities and associated greenhouse gas abatement costs for the residential sector," Energy, Elsevier, vol. 118(C), pages 795-807.
    20. Shakouri G., H. & Aliakbarisani, S., 2016. "At what valuation of sustainability can we abandon fossil fuels? A comprehensive multistage decision support model for electricity planning," Energy, Elsevier, vol. 107(C), pages 60-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5392-:d:271967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.