Advanced Search
MyIDEAS: Login

Pathways to a low-carbon economy for the UK with the macro-econometric E3MG model

Contents:

Author Info

  • Dagoumas, [alpha].S.
  • Barker, T.S.

Abstract

This paper examines different carbon pathways for achieving deep CO2 reduction targets for the UK using a macro-econometric hybrid model E3MG, which stands for Energy-Economy-Environment Model at the Global level. The E3MG, with the UK as one of its regions, combines a top-down approach for modeling the global economy and for estimating the aggregate and disaggregate energy demand and a bottom-up approach (Energy Technology subModel, ETM) for simulating the power sector, which then provides feedback to the energy demand equations and the whole economy. The ETM submodel uses a probabilistic approach and historical data for estimating the penetration levels of the different technologies, considering their economic, technical and environmental characteristics. Three pathway scenarios (CFH, CLC and CAM) simulate the CO2 reduction by 40%, 60% and 80% by 2050 compared to 1990 levels respectively and are compared with a reference scenario (REF), with no reduction target. The targets are modeled as the UK contribution to an international mitigation effort, such as achieving the G8 reduction targets, which is a more realistic political framework for the UK to move towards deep reductions rather than moving alone. This paper aims to provide modeling evidence that deep reduction targets can be met through different carbon pathways while also assessing the macroeconomic effects of the pathways on GDP and investment.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V2W-4YD9XFK-3/2/f0247afd92f27fb382208983d44a1bce
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Energy Policy.

Volume (Year): 38 (2010)
Issue (Month): 6 (June)
Pages: 3067-3077

as in new window
Handle: RePEc:eee:enepol:v:38:y:2010:i:6:p:3067-3077

Contact details of provider:
Web page: http://www.elsevier.com/locate/enpol

Related research

Keywords: Carbon pathways Low-carbon economy CO2 reductions;

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Terry Barker, 1999. "Achieving a 10% Cut in Europe's Carbon Dioxide Emissions using Additional Excise Duties: Coordinated, Uncoordinated and Unilateral Action using the Econometric Model E3ME," Economic Systems Research, Taylor & Francis Journals, vol. 11(4), pages 401-422.
  2. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
  3. Dagoumas, A.S. & Papagiannis, G.K. & Dokopoulos, P.S., 2006. "An economic assessment of the Kyoto Protocol application," Energy Policy, Elsevier, vol. 34(1), pages 26-39, January.
  4. Anderson, Dennis & Winne, Sarah, 2007. "Energy system change and external effects in climate change mitigation," Environment and Development Economics, Cambridge University Press, vol. 12(03), pages 359-378, June.
  5. Brannlund, Runar & Ghalwash, Tarek & Nordstrom, Jonas, 2007. "Increased energy efficiency and the rebound effect: Effects on consumption and emissions," Energy Economics, Elsevier, vol. 29(1), pages 1-17, January.
  6. Das, Anjana & Rossetti di Valdalbero, Domenico & Virdis, Maria R., 2007. "ACROPOLIS: An example of international collaboration in the field of energy modelling to support greenhouse gases mitigation policies," Energy Policy, Elsevier, vol. 35(2), pages 763-771, February.
  7. Dagoumas, A.S. & Kalaitzakis, E. & Papagiannis, G.K. & Dokopoulos, P.S., 2007. "A post-Kyoto analysis of the Greek electric sector," Energy Policy, Elsevier, vol. 35(3), pages 1551-1563, March.
  8. van Vuuren, Detlef P. & Hoogwijk, Monique & Barker, Terry & Riahi, Keywan & Boeters, Stefan & Chateau, Jean & Scrieciu, Serban & van Vliet, Jasper & Masui, Toshihiko & Blok, Kornelis & Blomen, Eliane , 2009. "Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials," Energy Policy, Elsevier, vol. 37(12), pages 5125-5139, December.
  9. Anderson, Kevin L. & Mander, Sarah L. & Bows, Alice & Shackley, Simon & Agnolucci, Paolo & Ekins, Paul, 2008. "The Tyndall decarbonisation scenarios--Part II: Scenarios for a 60% CO2 reduction in the UK," Energy Policy, Elsevier, vol. 36(10), pages 3764-3773, October.
  10. Barker, Terry & Ekins, Paul & Foxon, Tim, 2007. "Macroeconomic effects of efficiency policies for energy-intensive industries: The case of the UK Climate Change Agreements, 2000-2010," Energy Economics, Elsevier, vol. 29(4), pages 760-778, July.
  11. Terry Barker, Haoran Pan, Jonathan Kohler, Rachel Warren, and Sarah Winne, 2006. "Decarbonizing the Global Economy with Induced Technological Change: Scenarios to 2100 using E3MG," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 241-258.
  12. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
  13. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
  14. Strachan, Neil & Pye, Steve & Kannan, Ramachandran, 2009. "The iterative contribution and relevance of modelling to UK energy policy," Energy Policy, Elsevier, vol. 37(3), pages 850-860, March.
  15. van Vuuren, Detlef P. & Weyant, John & de la Chesnaye, Francisco, 2006. "Multi-gas scenarios to stabilize radiative forcing," Energy Economics, Elsevier, vol. 28(1), pages 102-120, January.
  16. Schulz, Thorsten F. & Kypreos, Socrates & Barreto, Leonardo & Wokaun, Alexander, 2008. "Intermediate steps towards the 2000Â W society in Switzerland: An energy-economic scenario analysis," Energy Policy, Elsevier, vol. 36(4), pages 1303-1317, April.
  17. Cosmi, C. & Di Leo, S. & Loperte, S. & Macchiato, M. & Pietrapertosa, F. & Salvia, M. & Cuomo, V., 2009. "A model for representing the Italian energy system: The NEEDS-TIMES experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 763-776, May.
  18. Weyant, John P., 2004. "Introduction and overview," Energy Economics, Elsevier, vol. 26(4), pages 501-515, July.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Jean-Francois Mercure & Pablo Salas, 2013. "An assessment of energy resources for global decarbonisation," 4CMR Working Paper Series 002, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
  2. Pollitt, Hector & Park, Seung-Joon & Lee, Soocheol & Ueta, Kazuhiro, 2014. "An economic and environmental assessment of future electricity generation mixes in Japan – an assessment using the E3MG macro-econometric model," Energy Policy, Elsevier, vol. 67(C), pages 243-254.
  3. J. F. Mercure & P. Salas, 2012. "An assessement of global energy resource economic potentials," Papers 1205.4693, arXiv.org, revised Aug 2012.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:6:p:3067-3077. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.