IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10230-d634729.html
   My bibliography  Save this article

Influence of Population Income on Energy Consumption and CO 2 Emissions in Buildings of Cities

Author

Listed:
  • Irene M. Zarco-Soto

    (Departamento de Ingeniería Eléctrica, Escuela Superior de Ingeniería, Universidad de Sevilla, 41092 Sevilla, Spain)

  • Fco. Javier Zarco-Soto

    (Departamento de Ingeniería Eléctrica, Escuela Superior de Ingeniería, Universidad de Sevilla, 41092 Sevilla, Spain)

  • Pedro J. Zarco-Periñán

    (Departamento de Ingeniería Eléctrica, Escuela Superior de Ingeniería, Universidad de Sevilla, 41092 Sevilla, Spain)

Abstract

More than half of the world’s population lives in cities. A large part of the emissions and energy consumption corresponds to buildings, both in the residential sector and in the service sector. This means that a large part of the measures taken by governments to reduce energy consumption and greenhouse gas emissions are focused on this sector. With this background, this paper studies energy consumption in city buildings and the CO 2 emissions they produce. It only makes use of publicly available data. The analysis is made from the point of view of income per inhabitant, and the results are obtained per inhabitant and household. To facilitate the analysis of the results, an index has been defined. The main contributions of this work are to analyze energy consumption and emissions due to buildings, study them from the point of view of the income of their inhabitants, and consider cities individually. The proposed methodology has been applied to the case of Spain. A total of 145 Spanish cities that have more than 50,000 inhabitants have been studied. The results show that the higher the income, the higher the consumption and emissions. Electricity consumptions are almost inelastic, while those of thermal origin are greatly influenced by the level of income. Regarding CO 2 emissions, the percentage of emissions of electrical origin with respect to total emissions is higher than that of thermal origin. In addition, the lower the income, the higher the percentage of emissions of electrical origin.

Suggested Citation

  • Irene M. Zarco-Soto & Fco. Javier Zarco-Soto & Pedro J. Zarco-Periñán, 2021. "Influence of Population Income on Energy Consumption and CO 2 Emissions in Buildings of Cities," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10230-:d:634729
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10230/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10230/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rui Xing & Tatsuya Hanaoka & Yuko Kanamori & Toshihiko Masui, 2017. "Greenhouse Gas and Air Pollutant Emissions of China’s Residential Sector: The Importance of Considering Energy Transition," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    2. Yujiro Hirano & Tomohiko Ihara & Masayuki Hara & Keita Honjo, 2020. "Estimation of Direct and Indirect Household CO 2 Emissions in 49 Japanese Cities with Consideration of Regional Conditions," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    3. Haitao Zheng & Jie Hu & Rong Guan & Shanshan Wang, 2016. "Examining Determinants of CO 2 Emissions in 73 Cities in China," Sustainability, MDPI, vol. 8(12), pages 1-17, December.
    4. Wadud, Zia & Dey, Himadri S. & Kabir, Md. Ashfanoor & Khan, Shahidul I., 2011. "Modeling and forecasting natural gas demand in Bangladesh," Energy Policy, Elsevier, vol. 39(11), pages 7372-7380.
    5. Mark Awe Tachega & Xilong Yao & Yang Liu & Dulal Ahmed & Wilhermina Ackaah & Mohamed Gabir & Justice Gyimah, 2021. "Income Heterogeneity and the Environmental Kuznets Curve Turning Points: Evidence from Africa," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    6. Fabrício Vieira & Maurício Aparecido Ribeiro & Antonio Carlos de Francisco & Giane Gonçalves Lenzi, 2019. "Influence of Extreme Events in Electric Energy Consumption and Gross Domestic Product," Sustainability, MDPI, vol. 11(3), pages 1-19, January.
    7. Omri, Anis, 2014. "An international literature survey on energy-economic growth nexus: Evidence from country-specific studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 951-959.
    8. Athanasios Anagnostis & Elpiniki Papageorgiou & Dionysis Bochtis, 2020. "Application of Artificial Neural Networks for Natural Gas Consumption Forecasting," Sustainability, MDPI, vol. 12(16), pages 1-29, August.
    9. Maolin Cheng & Bin Liu, 2019. "Analysis on the Influence of China’s Energy Consumption on Economic Growth," Sustainability, MDPI, vol. 11(14), pages 1-25, July.
    10. Stephanie Paige Williams & Gladman Thondhlana & Harn Wei Kua, 2020. "Electricity Use Behaviour in a High-Income Neighbourhood in Johannesburg, South Africa," Sustainability, MDPI, vol. 12(11), pages 1-19, June.
    11. Karanfil, Fatih & Li, Yuanjing, 2015. "Electricity consumption and economic growth: Exploring panel-specific differences," Energy Policy, Elsevier, vol. 82(C), pages 264-277.
    12. Jingqi Sun & Jing Shi & Boyang Shen & Shuqing Li & Yuwei Wang, 2018. "Nexus among Energy Consumption, Economic Growth, Urbanization and Carbon Emissions: Heterogeneous Panel Evidence Considering China’s Regional Differences," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    13. Qu, Jiansheng & Zeng, Jingjing & Li, Yan & Wang, Qin & Maraseni, Tek & Zhang, Lihua & Zhang, Zhiqiang & Clarke-Sather, Abigail, 2013. "Household carbon dioxide emissions from peasants and herdsmen in northwestern arid-alpine regions, China," Energy Policy, Elsevier, vol. 57(C), pages 133-140.
    14. Andrea Gabaldón Moreno & Fredy Vélez & Beril Alpagut & Patxi Hernández & Cecilia Sanz Montalvillo, 2021. "How to Achieve Positive Energy Districts for Sustainable Cities: A Proposed Calculation Methodology," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    15. Wen-Chi Liu, 2020. "The Relationship between Primary Energy Consumption and Real Gross Domestic Product: Evidence from Major Asian Countries," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    16. Bismark Ameyaw & Li Yao, 2018. "Analyzing the Impact of GDP on CO 2 Emissions and Forecasting Africa’s Total CO 2 Emissions with Non-Assumption Driven Bidirectional Long Short-Term Memory," Sustainability, MDPI, vol. 10(9), pages 1-23, August.
    17. Yi-Tui Chen, 2017. "The Factors Affecting Electricity Consumption and the Consumption Characteristics in the Residential Sector—A Case Example of Taiwan," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    18. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    19. Golley, Jane & Meng, Xin, 2012. "Income inequality and carbon dioxide emissions: The case of Chinese urban households," Energy Economics, Elsevier, vol. 34(6), pages 1864-1872.
    20. Chuan Tian & Guohui Feng & Shuai Li & Fuqiang Xu, 2019. "Scenario Analysis on Energy Consumption and CO 2 Emissions Reduction Potential in Building Heating Sector at Community Level," Sustainability, MDPI, vol. 11(19), pages 1-26, September.
    21. Chancel, Lucas, 2014. "Are younger generations higher carbon emitters than their elders?," Ecological Economics, Elsevier, vol. 100(C), pages 195-207.
    22. Aneeque A. Mir & Mohammed Alghassab & Kafait Ullah & Zafar A. Khan & Yuehong Lu & Muhammad Imran, 2020. "A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons," Sustainability, MDPI, vol. 12(15), pages 1-35, July.
    23. Alexander V. Balatsky & Galina I. Balatsky & Stanislav S. Borysov, 2015. "Resource Demand Growth and Sustainability Due to Increased World Consumption," Sustainability, MDPI, vol. 7(3), pages 1-11, March.
    24. Lyons, Seán & Pentecost, Anne & Tol, Richard S. J., 2012. "Socioeconomic Distribution of Emissions and Resource Use in Ireland," Papers WP426, Economic and Social Research Institute (ESRI).
    25. Lerato Shikwambana & Paidamwoyo Mhangara & Mahlatse Kganyago, 2021. "Assessing the Relationship between Economic Growth and Emissions Levels in South Africa between 1994 and 2019," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
    26. Uzziah Mutumbi & Gladman Thondhlana & Sheunesu Ruwanza, 2021. "Reported Behavioural Patterns of Electricity Use among Low-Income Households in Makhanda, South Africa," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro J. Zarco-Periñán & Fco Javier Zarco-Soto & Irene M. Zarco-Soto & José L. Martínez-Ramos & Rafael Sánchez-Durán, 2022. "CO 2 Emissions in Buildings: A Synopsis of Current Studies," Energies, MDPI, vol. 15(18), pages 1-10, September.
    2. Zhang, Weishi & Xu, Ying & Wang, Can & Streets, David G., 2022. "Assessment of the driving factors of CO2 mitigation costs of household biogas systems in China: A LMDI decomposition with cost analysis model," Renewable Energy, Elsevier, vol. 181(C), pages 978-989.
    3. Shi, Xunpeng & Wang, Keying & Cheong, Tsun Se & Zhang, Hongwu, 2020. "Prioritizing driving factors of household carbon emissions: An application of the LASSO model with survey data," Energy Economics, Elsevier, vol. 92(C).
    4. Lina Liu & Jiansheng Qu & Tek Narayan Maraseni & Yibo Niu & Jingjing Zeng & Lihua Zhang & Li Xu, 2020. "Household CO 2 Emissions: Current Status and Future Perspectives," IJERPH, MDPI, vol. 17(19), pages 1-19, September.
    5. Wang, Keying & Cui, Yongyan & Zhang, Hongwu & Shi, Xunpeng & Xue, Jinjun & Yuan, Zhao, 2022. "Household carbon footprints inequality in China: Drivers, components and dynamics," Energy Economics, Elsevier, vol. 115(C).
    6. Zhang, Hongwu & Shi, Xunpeng & Wang, Keying & Xue, Jinjun & Song, Ligang & Sun, Yongping, 2020. "Intertemporal lifestyle changes and carbon emissions: Evidence from a China household survey," Energy Economics, Elsevier, vol. 86(C).
    7. Marques, António Cardoso & Fuinhas, José Alberto & Neves, Sónia Almeida, 2018. "Ordinary and Special Regimes of electricity generation in Spain: How they interact with economic activity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1226-1240.
    8. Benkraiem, Ramzi & Lahiani, Amine & Miloudi, Anthony & Shahbaz, Muhammad, 2019. "The asymmetric role of shadow economy in the energy-growth nexus in Bolivia," Energy Policy, Elsevier, vol. 125(C), pages 405-417.
    9. Pedro J. Zarco-Periñán & Irene M. Zarco-Soto & Fco. Javier Zarco-Soto & Rafael Sánchez-Durán, 2021. "Influence of Population Income on Energy Consumption for Heating and Its CO 2 Emissions in Cities," Energies, MDPI, vol. 14(15), pages 1-18, July.
    10. Zhang, Yimeng & Wang, Feng & Zhang, Bing, 2023. "The impacts of household structure transitions on household carbon emissions in China," Ecological Economics, Elsevier, vol. 206(C).
    11. Yulin Liu & Min Zhang & Rujia Liu, 2020. "The Impact of Income Inequality on Carbon Emissions in China: A Household-Level Analysis," Sustainability, MDPI, vol. 12(7), pages 1-22, March.
    12. Mohammed AlKhars & Fazlul Miah & Hassan Qudrat-Ullah & Aymen Kayal, 2020. "A Systematic Review of the Relationship Between Energy Consumption and Economic Growth in GCC Countries," Sustainability, MDPI, vol. 12(9), pages 1-43, May.
    13. Zhang, Hongwu & Shi, Xunpeng & Cheong, Tsun Se & Wang, Keying, 2020. "Convergence of carbon emissions at the household level in China: A distribution dynamics approach," Energy Economics, Elsevier, vol. 92(C).
    14. Li, Jun & Zhang, Dayong & Su, Bin, 2019. "The Impact of Social Awareness and Lifestyles on Household Carbon Emissions in China," Ecological Economics, Elsevier, vol. 160(C), pages 145-155.
    15. Lina Liu & Jiansheng Qu & Afton Clarke-Sather & Tek Narayan Maraseni & Jiaxing Pang, 2017. "Spatial Variations and Determinants of Per Capita Household CO 2 Emissions (PHCEs) in China," Sustainability, MDPI, vol. 9(7), pages 1-19, July.
    16. Mohammed Bouznit & María P. Pablo-Romero & Antonio Sánchez-Braza, 2018. "Residential Electricity Consumption and Economic Growth in Algeria," Energies, MDPI, vol. 11(7), pages 1-18, June.
    17. Xinkuo Xu & Liyan Han, 2017. "Diverse Effects of Consumer Credit on Household Carbon Emissions at Quantiles: Evidence from Urban China," Sustainability, MDPI, vol. 9(9), pages 1-25, September.
    18. Chakraborty, Saptorshee Kanto & Mazzanti, Massimiliano, 2021. "Renewable electricity and economic growth relationship in the long run: Panel data econometric evidence from the OECD," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 330-341.
    19. Rafindadi, Abdulkadir Abdulrashid & Ozturk, Ilhan, 2016. "Effects of financial development, economic growth and trade on electricity consumption: Evidence from post-Fukushima Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1073-1084.
    20. Muhammed Sehid Gorus, 2021. "Applicability of Energy Conservation Policies in Turkey - A Sectoral Analysis Through the Fourier Approximation," Energy RESEARCH LETTERS, Asia-Pacific Applied Economics Association, vol. 1(1), pages 1-4.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10230-:d:634729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.