IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v31y2003i14p1493-1507.html
   My bibliography  Save this article

Implications of transportation policies on energy and environment in Kathmandu Valley, Nepal

Author

Listed:
  • Dhakal, Shobhakar

Abstract

No abstract is available for this item.

Suggested Citation

  • Dhakal, Shobhakar, 2003. "Implications of transportation policies on energy and environment in Kathmandu Valley, Nepal," Energy Policy, Elsevier, vol. 31(14), pages 1493-1507, November.
  • Handle: RePEc:eee:enepol:v:31:y:2003:i:14:p:1493-1507
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(02)00205-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bose, Ranjan Kumar & Srinivasachary, V, 1997. "Policies to reduce energy use and environmental emissions in the transport sector : A case of Delhi city," Energy Policy, Elsevier, vol. 25(14-15), pages 1137-1150, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    2. M. AlSabbagh & Y. L. Siu & A. Guehnemann & J. Barrett, 2017. "Mitigation of CO2 emissions from the road passenger transport sector in Bahrain," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 99-119, January.
    3. Hu, Guangxiao & Ma, Xiaoming & Ji, Junping, 2019. "Scenarios and policies for sustainable urban energy development based on LEAP model – A case study of a postindustrial city: Shenzhen China," Applied Energy, Elsevier, vol. 238(C), pages 876-886.
    4. Monica Maduekwe & Uduak Akpan & Salisu Isihak, 2020. "Road Transport Energy Consumption and Vehicular Emissions in Lagos, Nigeria," Research Africa Network Working Papers 20/055, Research Africa Network (RAN).
    5. Rubbelke, Dirk T.G. & Rive, Nathan, 2008. "Effects of the CDM on Poverty Eradication and Global Climate Protection," Climate Change Modelling and Policy Working Papers 46650, Fondazione Eni Enrico Mattei (FEEM).
    6. Pradhan, Shreekar & Ale, Bhakta Bahadur & Amatya, Vishwa Bhusan, 2006. "Mitigation potential of greenhouse gas emission and implications on fuel consumption due to clean energy vehicles as public passenger transport in Kathmandu Valley of Nepal: A case study of trolley bu," Energy, Elsevier, vol. 31(12), pages 1748-1760.
    7. André Luiz Lopes Toledo & Emílio Lèbre La Rovere, 2018. "Urban Mobility and Greenhouse Gas Emissions: Status, Public Policies, and Scenarios in a Developing Economy City, Natal, Brazil," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    8. Saima Abdul Jabbar & Laila Tul Qadar & Sulaman Ghafoor & Lubna Rasheed & Zouina Sarfraz & Azza Sarfraz & Muzna Sarfraz & Miguel Felix & Ivan Cherrez-Ojeda, 2022. "Air Quality, Pollution and Sustainability Trends in South Asia: A Population-Based Study," IJERPH, MDPI, vol. 19(12), pages 1-16, June.
    9. Malla, Sunil, 2014. "Assessment of mobility and its impact on energy use and air pollution in Nepal," Energy, Elsevier, vol. 69(C), pages 485-496.
    10. Pongthanaisawan, Jakapong & Sorapipatana, Chumnong, 2013. "Greenhouse gas emissions from Thailand’s transport sector: Trends and mitigation options," Applied Energy, Elsevier, vol. 101(C), pages 288-298.
    11. Ahanchian, Mohammad & Biona, Jose Bienvenido Manuel, 2014. "Energy demand, emissions forecasts and mitigation strategies modeled over a medium-range horizon: The case of the land transportation sector in Metro Manila," Energy Policy, Elsevier, vol. 66(C), pages 615-629.
    12. Shrestha, Ram M. & Rajbhandari, Salony, 2010. "Energy and environmental implications of carbon emission reduction targets: Case of Kathmandu Valley, Nepal," Energy Policy, Elsevier, vol. 38(9), pages 4818-4827, September.
    13. Limanond, Thirayoot & Jomnonkwao, Sajjakaj & Srikaew, Artit, 2011. "Projection of future transport energy demand of Thailand," Energy Policy, Elsevier, vol. 39(5), pages 2754-2763, May.
    14. Takeshita, Takayuki, 2012. "Assessing the co-benefits of CO2 mitigation on air pollutants emissions from road vehicles," Applied Energy, Elsevier, vol. 97(C), pages 225-237.
    15. Shekarchian, M. & Moghavvemi, M. & Zarifi, F. & Moghavvemi, S. & Motasemi, F. & Mahlia, T.M.I., 2017. "Impact of infrastructural policies to reduce travel time expenditure of car users with significant reductions in energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 327-335.
    16. Chuan Tian & Guohui Feng & Shuai Li & Fuqiang Xu, 2019. "Scenario Analysis on Energy Consumption and CO 2 Emissions Reduction Potential in Building Heating Sector at Community Level," Sustainability, MDPI, vol. 11(19), pages 1-26, September.
    17. Bhattacharyya, Subhes C. & Timilsina, Govinda R., 2010. "Modelling energy demand of developing countries: Are the specific features adequately captured?," Energy Policy, Elsevier, vol. 38(4), pages 1979-1990, April.
    18. Huaping Sun & Lingxiang Hu & Yong Geng & Guangchuan Yang, 2020. "Uncovering impact factors of carbon emissions from transportation sector: evidence from China’s Yangtze River Delta Area," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1423-1437, October.
    19. Silveira, Semida & Khatiwada, Dilip, 2010. "Ethanol production and fuel substitution in Nepal--Opportunity to promote sustainable development and climate change mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1644-1652, August.
    20. Emodi, Nnaemeka Vincent & Emodi, Chinenye Comfort & Murthy, Girish Panchakshara & Emodi, Adaeze Saratu Augusta, 2017. "Energy policy for low carbon development in Nigeria: A LEAP model application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 247-261.
    21. Kadian, Rashmi & Dahiya, R.P. & Garg, H.P., 2007. "Energy-related emissions and mitigation opportunities from the household sector in Delhi," Energy Policy, Elsevier, vol. 35(12), pages 6195-6211, December.
    22. Sonmez, Mustafa & Akgüngör, Ali Payıdar & Bektaş, Salih, 2017. "Estimating transportation energy demand in Turkey using the artificial bee colony algorithm," Energy, Elsevier, vol. 122(C), pages 301-310.
    23. John D. Beard & Steven M. Thygerson & Alisandra Olivares & Jaxson E. Tadje & Selah Willis & James D. Johnston, 2022. "Gaseous Air Pollutants and Respirable Crystalline Silica Inside and Outside Homes at Brick Kilns in Bhaktapur, Kathmandu Valley, Nepal," IJERPH, MDPI, vol. 19(19), pages 1-14, September.
    24. Muhammad Muhitur Rahman & Syed Masiur Rahman & Md Shafiullah & Md Arif Hasan & Uneb Gazder & Abdullah Al Mamun & Umer Mansoor & Mohammad Tamim Kashifi & Omer Reshi & Md Arifuzzaman & Md Kamrul Islam &, 2022. "Energy Demand of the Road Transport Sector of Saudi Arabia—Application of a Causality-Based Machine Learning Model to Ensure Sustainable Environment," Sustainability, MDPI, vol. 14(23), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Neves Schmitz Gonçalves & Renata Albergaria de Mello Bandeira & Mariane Gonzalez da Costa & George Vasconcelos Goes & Tássia Faria de Assis & Márcio de Almeida D’Agosto & Isabela Rocha Pombo Le, 2020. "A Multitier Approach to Estimating the Energy Efficiency of Urban Passenger Mobility," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    2. Kumar, Amit & Bhattacharya, S.C & Pham, H.L, 2003. "Greenhouse gas mitigation potential of biomass energy technologies in Vietnam using the long range energy alternative planning system model," Energy, Elsevier, vol. 28(7), pages 627-654.
    3. Kumar, Subhash & Madlener, Reinhard, 2015. "A Least-Cost Assessment of the CO2 Mitigation Potential Using Renewable Energies in the Indian Electricity Supply Sector," FCN Working Papers 14/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    4. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    5. Song, Ho-Jun & Lee, Seungmoon & Maken, Sanjeev & Ahn, Se-Woong & Park, Jin-Won & Min, Byoungryul & Koh, Wongun, 2007. "Environmental and economic assessment of the chemical absorption process in Korea using the LEAP model," Energy Policy, Elsevier, vol. 35(10), pages 5109-5116, October.
    6. Prasad, Ravita D. & Raturi, Atul, 2018. "Low-carbon measures for Fiji's land transport energy system," Utilities Policy, Elsevier, vol. 54(C), pages 132-147.
    7. Sonmez, Mustafa & Akgüngör, Ali Payıdar & Bektaş, Salih, 2017. "Estimating transportation energy demand in Turkey using the artificial bee colony algorithm," Energy, Elsevier, vol. 122(C), pages 301-310.
    8. Kumar, Subhash, 2016. "Assessment of renewables for energy security and carbon mitigation in Southeast Asia: The case of Indonesia and Thailand," Applied Energy, Elsevier, vol. 163(C), pages 63-70.
    9. Farooq, Muhammad Khalid & Kumar, S. & Shrestha, Ram M., 2013. "Energy, environmental and economic effects of Renewable Portfolio Standards (RPS) in a Developing Country," Energy Policy, Elsevier, vol. 62(C), pages 989-1001.
    10. Dominic A. Savio & Vimala A. Juliet & Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen & Frede Blaabjerg, 2019. "Photovoltaic Integrated Hybrid Microgrid Structured Electric Vehicle Charging Station and Its Energy Management Approach," Energies, MDPI, vol. 12(1), pages 1-28, January.
    11. Pongthanaisawan, Jakapong & Sorapipatana, Chumnong, 2013. "Greenhouse gas emissions from Thailand’s transport sector: Trends and mitigation options," Applied Energy, Elsevier, vol. 101(C), pages 288-298.
    12. Houri Jafari, H. & Baratimalayeri, A., 2008. "The crisis of gasoline consumption in the Iran's transportation sector," Energy Policy, Elsevier, vol. 36(7), pages 2536-2543, July.
    13. Hoxha, Julian & Çodur, Muhammed Yasin & Mustafaraj, Enea & Kanj, Hassan & El Masri, Ali, 2023. "Prediction of transportation energy demand in Türkiye using stacking ensemble models: Methodology and comparative analysis," Applied Energy, Elsevier, vol. 350(C).
    14. Limanond, Thirayoot & Jomnonkwao, Sajjakaj & Srikaew, Artit, 2011. "Projection of future transport energy demand of Thailand," Energy Policy, Elsevier, vol. 39(5), pages 2754-2763, May.
    15. Halkos, George & Tzeremes, Panagiotis, 2015. "Assessing greenhouse gas emissions in Estonia's energy system," MPRA Paper 66105, University Library of Munich, Germany.
    16. Kumar, Subhash & Madlener, Reinhard, 2016. "CO2 emission reduction potential assessment using renewable energy in India," Energy, Elsevier, vol. 97(C), pages 273-282.
    17. Young-Sun Jeong, 2017. "Assessment of Alternative Scenarios for CO 2 Reduction Potential in the Residential Building Sector," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    18. Muhammad Muhitur Rahman & Syed Masiur Rahman & Md Shafiullah & Md Arif Hasan & Uneb Gazder & Abdullah Al Mamun & Umer Mansoor & Mohammad Tamim Kashifi & Omer Reshi & Md Arifuzzaman & Md Kamrul Islam &, 2022. "Energy Demand of the Road Transport Sector of Saudi Arabia—Application of a Causality-Based Machine Learning Model to Ensure Sustainable Environment," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    19. Bose, Ranjan Kumar, 1998. "Automotive energy use and emissions control: a simulation model to analyse transport strategies for Indian metropolises," Energy Policy, Elsevier, vol. 26(13), pages 1001-1016, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:31:y:2003:i:14:p:1493-1507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.