IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v117y2018ipbp774-793.html
   My bibliography  Save this article

Departure time and route choices in bottleneck equilibrium under risk and ambiguity

Author

Listed:
  • Liu, Yang
  • Li, Yuanyuan
  • Hu, Lu

Abstract

This paper examines commuters’ departure time and route choices in the morning commute problem when a true distribution of travel time is unknown but belongs to a bounded distributional uncertainty set. The travel preferences towards risk and ambiguity are distinguished by adopting the criterion of ambiguity-aware Constant Absolute Risk Aversion (CARA) travel time. We first examine the dynamic user equilibrium for a single-route model with a homogeneous preference towards risk and ambiguity. Compared with risk-neutral commuters, we find that departure time window is shifted earlier for the risk-averse commuters and shifted later for the risk-seeking commuters. We also study the single bottleneck with a risk-averse class and a risk-seeking class. We show that with a larger gap between the two classes’ preferences, the congestion pattern will change from one peak to two peaks. It implies that preference heterogeneity may stagger the departure time choices and thereby relieve the average congestion. Last, we examine a two-route problem with homogeneous preference. Commuters choose between a fast and risky route (highway) and a slow and safe route (local arterial). We prove the monotonicity of the traffic flow distribution between the two routes with respect to the maximum variation in travel time. Furthermore, we find that reducing the uncertainty on the highway by providing information will reduce the total system cost and the total expected congestion simultaneously for risk-averse commuters. However, it will reduce the total expected congestion but increase the total system cost for risk-seeking commuters. In the numerical section, the price of anarchy is analyzed by varying the risk preference and the ambiguity preference.

Suggested Citation

  • Liu, Yang & Li, Yuanyuan & Hu, Lu, 2018. "Departure time and route choices in bottleneck equilibrium under risk and ambiguity," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 774-793.
  • Handle: RePEc:eee:transb:v:117:y:2018:i:pb:p:774-793
    DOI: 10.1016/j.trb.2017.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517307385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2017.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carrion, Carlos & Levinson, David, 2012. "Value of travel time reliability: A review of current evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 720-741.
    2. Lindsey, Robin, 2009. "Cost recovery from congestion tolls with random capacity and demand," Journal of Urban Economics, Elsevier, vol. 66(1), pages 16-24, July.
    3. Nagurney, Anna & Dong, June, 2002. "A multiclass, multicriteria traffic network equilibrium model with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 445-469, June.
    4. An, Yonghong & Zhang, Zhixiang, 2012. "Congestion with heterogeneous commuters," Economic Modelling, Elsevier, vol. 29(3), pages 557-565.
    5. Liu, Yang & Nie, Yu (Marco), 2011. "Morning commute problem considering route choice, user heterogeneity and alternative system optima," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 619-642.
    6. Fosgerau, Mogens, 2008. "Congestion costs in bottleneck equilibrium with stochastic capacity and demand," MPRA Paper 10040, University Library of Munich, Germany.
    7. Robin Lindsey, 2004. "Existence, Uniqueness, and Trip Cost Function Properties of User Equilibrium in the Bottleneck Model with Multiple User Classes," Transportation Science, INFORMS, vol. 38(3), pages 293-314, August.
    8. Watling, David, 2006. "User equilibrium traffic network assignment with stochastic travel times and late arrival penalty," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1539-1556, December.
    9. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    10. Kemel, Emmanuel & Paraschiv, Corina, 2013. "Prospect Theory for joint time and money consequences in risk and ambiguity," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 81-95.
    11. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    12. Connors, Richard D. & Sumalee, Agachai & Watling, David P., 2007. "Sensitivity analysis of the variable demand probit stochastic user equilibrium with multiple user-classes," Transportation Research Part B: Methodological, Elsevier, vol. 41(6), pages 593-615, July.
    13. Benezech, Vincent & Coulombel, Nicolas, 2013. "The value of service reliability," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 1-15.
    14. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    15. Carlos F. Daganzo, 1985. "The Uniqueness of a Time-dependent Equilibrium Distribution of Arrivals at a Single Bottleneck," Transportation Science, INFORMS, vol. 19(1), pages 29-37, February.
    16. Chen, Anthony & Zhou, Zhong, 2010. "The [alpha]-reliable mean-excess traffic equilibrium model with stochastic travel times," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 493-513, May.
    17. Barbara W.Y. Siu & Hong K. Lo, 2009. "Equilibrium Trip Scheduling in Congested Traffic under Uncertainty," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 147-167, Springer.
    18. Yao, Tao & Wei, Mike Mingcheng & Zhang, Bo & Friesz, Terry, 2012. "Congestion derivatives for a traffic bottleneck with heterogeneous commuters," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1454-1473.
    19. Fosgerau, Mogens, 2010. "On the relation between the mean and variance of delay in dynamic queues with random capacity and demand," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 598-603, April.
    20. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1999. "Information and time-of-usage decisions in the bottleneck model with stochastic capacity and demand," European Economic Review, Elsevier, vol. 43(3), pages 525-548, March.
    21. de Palma, André & Picard, Nathalie, 2005. "Route choice decision under travel time uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(4), pages 295-324, May.
    22. Terry L. Friesz & David Bernstein & Tony E. Smith & Roger L. Tobin & B. W. Wie, 1993. "A Variational Inequality Formulation of the Dynamic Network User Equilibrium Problem," Operations Research, INFORMS, vol. 41(1), pages 179-191, February.
    23. MERCHANT, Deepak K. & NEMHAUSER, George L., 1978. "A model and an algorithm for the dynamic traffic assignment problems," LIDAM Reprints CORE 346, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    24. Chen, Hongyu & Liu, Yang & Nie, Yu (Marco), 2015. "Solving the step-tolled bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 210-229.
    25. Miller-Hooks, Elise & Mahmassani, Hani, 2003. "Path comparisons for a priori and time-adaptive decisions in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 146(1), pages 67-82, April.
    26. Liu, Yang & Nie, Yu (Marco) & Hall, Jonathan, 2015. "A semi-analytical approach for solving the bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 56-70.
    27. Yao, Tao & Friesz, Terry L. & Wei, Mike Mingcheng & Yin, Yafeng, 2010. "Congestion derivatives for a traffic bottleneck," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1149-1165, December.
    28. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1992. "Route choice with heterogeneous drivers and group-specific congestion costs," Regional Science and Urban Economics, Elsevier, vol. 22(1), pages 71-102, March.
    29. Daniel Ellsberg, 1961. "Risk, Ambiguity, and the Savage Axioms," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 75(4), pages 643-669.
    30. Gordon F. Newell, 1987. "The Morning Commute for Nonidentical Travelers," Transportation Science, INFORMS, vol. 21(2), pages 74-88, May.
    31. van den Berg, Vincent & Verhoef, Erik T., 2011. "Winning or losing from dynamic bottleneck congestion pricing?: The distributional effects of road pricing with heterogeneity in values of time and schedule delay," Journal of Public Economics, Elsevier, vol. 95(7-8), pages 983-992, August.
    32. Lo, Hong K. & Luo, X.W. & Siu, Barbara W.Y., 2006. "Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 792-806, November.
    33. Fosgerau, Mogens & Karlström, Anders, 2010. "The value of reliability," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 38-49, January.
    34. Ramadurai, Gitakrishnan & Ukkusuri, Satish V. & Zhao, Jinye & Pang, Jong-Shi, 2010. "Linear complementarity formulation for single bottleneck model with heterogeneous commuters," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 193-214, February.
    35. Ling-Ling Xiao & Hai-Jun Huang & Ronghui Liu, 2015. "Congestion Behavior and Tolls in a Bottleneck Model with Stochastic Capacity," Transportation Science, INFORMS, vol. 49(1), pages 46-65, February.
    36. van den Berg, Vincent & Verhoef, Erik T., 2011. "Winning or losing from dynamic bottleneck congestion pricing?," Journal of Public Economics, Elsevier, vol. 95(7), pages 983-992.
    37. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    38. Qi, Jin & Sim, Melvyn & Sun, Defeng & Yuan, Xiaoming, 2016. "Preferences for travel time under risk and ambiguity: Implications in path selection and network equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 264-284.
    39. Yang, Hai & Huang, Hai-Jun, 2004. "The multi-class, multi-criteria traffic network equilibrium and systems optimum problem," Transportation Research Part B: Methodological, Elsevier, vol. 38(1), pages 1-15, January.
    40. Tan, Zhijia & Yang, Hai & Guo, Renyong, 2014. "Pareto efficiency of reliability-based traffic equilibria and risk-taking behavior of travelers," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 16-31.
    41. Nie, Yu (Marco) & Wu, Xing, 2009. "Shortest path problem considering on-time arrival probability," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 597-613, July.
    42. Deepak K. Merchant & George L. Nemhauser, 1978. "A Model and an Algorithm for the Dynamic Traffic Assignment Problems," Transportation Science, INFORMS, vol. 12(3), pages 183-199, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Senlai Zhu & Hantao Yu & Congjun Fan, 2024. "Travel Plan Sharing and Regulation for Managing Traffic Bottleneck Based on Blockchain Technology," Sustainability, MDPI, vol. 16(4), pages 1-20, February.
    2. Xinyuan Chen & Ruyang Yin & Qinhe An & Yuan Zhang, 2021. "Modeling a Distance-Based Preferential Fare Scheme for Park-and-Ride Services in a Multimodal Transport Network," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    3. Jia, Jianlin & Chen, Yanyan & Wang, Yang & Li, Tongfei & Li, Yongxing, 2021. "A new global method for identifying urban rail transit key station during COVID-19: A case study of Beijing, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    4. Xu, Guangming & Liu, Wei & Wu, Runfa & Yang, Hai, 2021. "A double time-scale passenger assignment model for high-speed railway networks with continuum capacity approximation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    5. Chen, Yinghao & Song, Xiaopeng & Cheng, Qixiu & An, Qinhe & Zhang, Yuan, 2021. "A cordon-based reservation system for urban traffic management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    6. Wen Yi & Robyn Phipps & Hans Wang, 2020. "Sustainable Ship Loading Planning for Prefabricated Products in the Construction Industry," Sustainability, MDPI, vol. 12(21), pages 1-12, October.
    7. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    8. Long, Jiancheng & Szeto, W.Y., 2019. "Congestion and environmental toll schemes for the morning commute with heterogeneous users and parallel routes," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 305-333.
    9. Tang, Zhe-Yi & Tian, Li-Jun & Wang, David Z.W., 2021. "Multi-modal morning commute with endogenous shared autonomous vehicle penetration considering parking space constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    2. Liu, Peng & Liu, Jielun & Ong, Ghim Ping & Tian, Qiong, 2020. "Flow pattern and optimal capacity in a bi-modal traffic corridor with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    3. Liu, Qiumin & Jiang, Rui & Liu, Ronghui & Zhao, Hui & Gao, Ziyou, 2020. "Travel cost budget based user equilibrium in a bottleneck model with stochastic capacity," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 1-37.
    4. Liu, Yang & Nie, Yu (Marco) & Hall, Jonathan, 2015. "A semi-analytical approach for solving the bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 56-70.
    5. Ling-Ling Xiao & Hai-Jun Huang & Ronghui Liu, 2015. "Congestion Behavior and Tolls in a Bottleneck Model with Stochastic Capacity," Transportation Science, INFORMS, vol. 49(1), pages 46-65, February.
    6. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    7. Zhu, Tingting & Li, Yao & Long, Jiancheng, 2022. "Departure time choice equilibrium and tolling strategies for a bottleneck with continuous scheduling preference," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    8. Chen, Hongyu & Nie, Yu (Marco) & Yin, Yafeng, 2015. "Optimal multi-step toll design under general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 775-793.
    9. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    10. Chen, Hongyu & Liu, Yang & Nie, Yu (Marco), 2015. "Solving the step-tolled bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 210-229.
    11. Xiao, Yu & Coulombel, Nicolas & Palma, André de, 2017. "The valuation of travel time reliability: does congestion matter?," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 113-141.
    12. Lu, Gongyuan & Nie, Yu(Marco) & Liu, Xiaobo & Li, Denghui, 2019. "Trajectory-based traffic management inside an autonomous vehicle zone," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 76-98.
    13. Small, Kenneth A., 2015. "The bottleneck model: An assessment and interpretation," Economics of Transportation, Elsevier, vol. 4(1), pages 110-117.
    14. André de Palma & Mogens Fosgerau, 2011. "Dynamic Traffic Modeling," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 9, Edward Elgar Publishing.
    15. Tian, Qiong & Liu, Peng & Ong, Ghim Ping & Huang, Hai-Jun, 2021. "Morning commuting pattern and crowding pricing in a many-to-one public transit system with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    16. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2017. "Step tolling in an activity-based bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 306-334.
    17. Liu, Wei & Zhang, Fangni & Yang, Hai, 2017. "Modeling and managing morning commute with both household and individual travels," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 227-247.
    18. Akamatsu, Takashi & Wada, Kentaro & Iryo, Takamasa & Hayashi, Shunsuke, 2021. "A new look at departure time choice equilibrium models with heterogeneous users," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 152-182.
    19. Wu, Wen-Xiang & Huang, Hai-Jun, 2015. "An ordinary differential equation formulation of the bottleneck model with user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 34-58.
    20. Nicolas Coulombel & André De Palma, 2014. "Variability of Travel Time, Congestion, and the Cost of Travel," Mathematical Population Studies, Taylor & Francis Journals, vol. 21(4), pages 220-242, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:117:y:2018:i:pb:p:774-793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.