IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v58y2021ics0275531921000714.html
   My bibliography  Save this article

Does low-carbon pilot city program reduce carbon intensity? Evidence from Chinese cities

Author

Listed:
  • Feng, Tong
  • Lin, Zhongguo
  • Du, Huibin
  • Qiu, Yueming
  • Zuo, Jian

Abstract

Low-carbon pilot city (LCPC) programs have been implemented in China to facilitate low carbon production and consumption for combating climate change. The two rounds of low-carbon pilot regions covered six provinces and 36 cities in China. Governments have invested considerable funds and resources to develop LCPCs. Based on panel data from 49 cities for 2005–2018, we employ a matched difference-in-differences approach to explore the effects of the LCPC program on carbon intensity at the city level. Results show that in contrast to the program’s goals and expectations, LCPCs significantly increased carbon intensity in both rounds by 15 %–20 % compared with control groups. The growth effect on carbon intensity gradually weakened in the third year following the adoption of the LCPC program. An influential factor analysis indicates that the effects are stronger in eastern coastal cities with improved economic conditions and a reduced proportion of secondary industry production. A series of robustness and placebo tests indicate that the results are robust. We identify possible reasons for this unexpected result, such as preliminary infrastructure construction and development of economic circles. These measures show that the process of decarbonization may result in higher carbon intensity in the short term.

Suggested Citation

  • Feng, Tong & Lin, Zhongguo & Du, Huibin & Qiu, Yueming & Zuo, Jian, 2021. "Does low-carbon pilot city program reduce carbon intensity? Evidence from Chinese cities," Research in International Business and Finance, Elsevier, vol. 58(C).
  • Handle: RePEc:eee:riibaf:v:58:y:2021:i:c:s0275531921000714
    DOI: 10.1016/j.ribaf.2021.101450
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0275531921000714
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2021.101450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smriti Mallapaty, 2020. "How China could be carbon neutral by mid-century," Nature, Nature, vol. 586(7830), pages 482-483, October.
    2. Wang, Yang & Zhao, Fu-Yun & Kuckelkorn, Jens & Liu, Di & Liu, Li-Qun & Pan, Xiao-Chuan, 2014. "Cooling energy efficiency and classroom air environment of a school building operated by the heat recovery air conditioning unit," Energy, Elsevier, vol. 64(C), pages 991-1001.
    3. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    4. Viard, V. Brian & Fu, Shihe, 2015. "The effect of Beijing's driving restrictions on pollution and economic activity," Journal of Public Economics, Elsevier, vol. 125(C), pages 98-115.
    5. Narayan, Paresh Kumar & Narayan, Seema, 2010. "Carbon dioxide emissions and economic growth: Panel data evidence from developing countries," Energy Policy, Elsevier, vol. 38(1), pages 661-666, January.
    6. Fu, Shihe & Gu, Yizhen, 2017. "Highway toll and air pollution: Evidence from Chinese cities," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 32-49.
    7. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    8. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    9. Wang, Hongsheng & Wang, Yunxia & Wang, Haikun & Liu, Miaomiao & Zhang, Yanxia & Zhang, Rongrong & Yang, Jie & Bi, Jun, 2014. "Mitigating greenhouse gas emissions from China's cities: Case study of Suzhou," Energy Policy, Elsevier, vol. 68(C), pages 482-489.
    10. Liu, Huizheng & Zong, Zhe & Hynes, Kate & De Bruyne, Karolien, 2020. "Can China reduce the carbon emissions of its manufacturing exports by moving up the global value chain?," Research in International Business and Finance, Elsevier, vol. 51(C).
    11. Feng, Tong & Du, Huibin & Zhang, Zengkai & Mi, Zhifu & Guan, Dabo & Zuo, Jian, 2020. "Carbon transfer within China: Insights from production fragmentation," Energy Economics, Elsevier, vol. 86(C).
    12. Zhifu Mi & Jing Meng & Dabo Guan & Yuli Shan & Malin Song & Yi-Ming Wei & Zhu Liu & Klaus Hubacek, 2017. "Chinese CO2 emission flows have reversed since the global financial crisis," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    13. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    14. Lixiao Zhang & Yueyi Feng & Bin Chen, 2011. "Alternative Scenarios for the Development of a Low-Carbon City: A Case Study of Beijing, China," Energies, MDPI, vol. 4(12), pages 1-16, December.
    15. Jiang, Hai & Zhang, Jinyi, 2017. "Bank capital buffer, franchise value, and risk heterogeneity in China," Research in International Business and Finance, Elsevier, vol. 42(C), pages 1455-1466.
    16. Gomi, Kei & Shimada, Kouji & Matsuoka, Yuzuru, 2010. "A low-carbon scenario creation method for a local-scale economy and its application in Kyoto city," Energy Policy, Elsevier, vol. 38(9), pages 4783-4796, September.
    17. Phdungsilp, Aumnad, 2010. "Integrated energy and carbon modeling with a decision support system: Policy scenarios for low-carbon city development in Bangkok," Energy Policy, Elsevier, vol. 38(9), pages 4808-4817, September.
    18. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    19. Dhakal, Shobhakar, 2009. "Urban energy use and carbon emissions from cities in China and policy implications," Energy Policy, Elsevier, vol. 37(11), pages 4208-4219, November.
    20. Romero-Ávila, Diego & Strauch, Rolf, 2008. "Public finances and long-term growth in Europe: Evidence from a panel data analysis," European Journal of Political Economy, Elsevier, vol. 24(1), pages 172-191, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingming Zhu & Jigan Wang & Jie Zhang & Zhencheng Xing, 2022. "Urban Low-Carbon Consumption Performance Assessment: A Case Study of Yangtze River Delta Cities, China," Sustainability, MDPI, vol. 14(16), pages 1-14, August.
    2. Kong, Qunxi & Li, Rongrong & Jiang, X. & Sun, Peibo & Peng, Dan, 2022. "Has transportation infrastructure development improved the quality of economic growth in China’s cities? A quasi-natural experiment based on the introduction of high-speed rail," Research in International Business and Finance, Elsevier, vol. 62(C).
    3. Chai, Shanglei & Yang, Xiaoli & Zhang, Zhen & Abedin, Mohammad Zoynul & Lucey, Brian, 2022. "Regional imbalances of market efficiency in China’s pilot emission trading schemes (ETS): A multifractal perspective," Research in International Business and Finance, Elsevier, vol. 63(C).
    4. Li Zhu & Chen Wang & Ning Huang & Yu Fu & Zhexing Yan, 2022. "Developing an Indicator System to Monitor City’s Sustainability Integrated Local Governance: A Case Study in Zhangjiakou," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    5. Jinru Wang & Zhenwu Shi & Jie Liu & Hongrui Zhang, 2023. "Promoting “NEVs Pilot Policy” as an Effective Way for Reducing Urban Transport Carbon Emissions: Empirical Evidence from China," Sustainability, MDPI, vol. 15(14), pages 1-24, July.
    6. Yan, Yu & Huang, Junbing, 2022. "The role of population agglomeration played in China's carbon intensity: A city-level analysis," Energy Economics, Elsevier, vol. 114(C).
    7. Ping Guo & Jin Li & Jinsong Kuang & Yifei Zhu & Renrui Xiao & Donghao Duan & Baocong Huang, 2022. "Low-Carbon Governance, Fiscal Decentralization and Sulfur Dioxide Emissions: Evidence from a Quasi-Experiment with Chinese Heavy Pollution Enterprises," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    8. Lu, Juan & Li, He, 2023. "The impact of environmental corruption on green consumption: A quantitative analysis based on China's Judicial Document Network and Baidu Index," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    9. Rongrong Shi & Dian Song & Guoqiang Rui & Hainan Wu, 2022. "How the Establishment of the National Civilized City Promotes Urban Green Development: From the Perspective of Administrative Competing Theory—A Quasi Experiment Study in China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    10. Tao Ge & Jinye Li & Cang Wang, 2023. "Econometric analysis of the impact of innovative city pilots on CO2 emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9359-9386, September.
    11. Yin, Hongying & Qian, Yuting & Zhang, Bin & Pérez, Rebeca, 2023. "Urban construction and firm green innovation: Evidence from China's low-carbon pilot city initiative," Pacific-Basin Finance Journal, Elsevier, vol. 80(C).
    12. Yang, Shubo & Jahanger, Atif & Hossain, Mohammad Razib, 2023. "Does China's low-carbon city pilot intervention limit electricity consumption? An analysis of industrial energy efficiency using time-varying DID model," Energy Economics, Elsevier, vol. 121(C).
    13. Wang, Kunlun & Zheng, Leven J. & Zhang, Justin Zuopeng & Yao, Hongjiang, 2022. "The impact of promoting new energy vehicles on carbon intensity: Causal evidence from China," Energy Economics, Elsevier, vol. 114(C).
    14. Jinling Yan & Junfeng Zhao & Xiaodong Yang & Xufeng Su & Hailing Wang & Qiying Ran & Jianliang Shen, 2021. "Does Low-Carbon City Pilot Policy Alleviate Urban Haze Pollution? Empirical Evidence from a Quasi-Natural Experiment in China," IJERPH, MDPI, vol. 18(21), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qianli & Cai, Bofeng & Dhakal, Shobhakar & Pei, Sha & Liu, Chunlan & Shi, Xiaoping & Hu, Fangfang, 2017. "CO2 emission data for Chinese cities," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 198-208.
    2. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    3. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    4. Xuecheng Wang & Xu Tang & Zhenhua Feng & Yi Zhang, 2019. "Characterizing the Embodied Carbon Emissions Flows and Ecological Relationships among Four Chinese Megacities and Other Provinces," Sustainability, MDPI, vol. 11(9), pages 1-19, May.
    5. Zhu, Junming & Wang, Jiali, 2021. "The effects of fuel content regulation at ports on regional pollution and shipping industry," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
    6. Feng, Y.Y. & Chen, S.Q. & Zhang, L.X., 2013. "System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China," Ecological Modelling, Elsevier, vol. 252(C), pages 44-52.
    7. Mi, Zhifu & Zheng, Jiali & Meng, Jing & Zheng, Heran & Li, Xian & Coffman, D'Maris & Woltjer, Johan & Wang, Shouyang & Guan, Dabo, 2019. "Carbon emissions of cities from a consumption-based perspective," Applied Energy, Elsevier, vol. 235(C), pages 509-518.
    8. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    9. Chuyu Xia & Yan Li & Yanmei Ye & Zhou Shi & Jingming Liu, 2017. "Decomposed Driving Factors of Carbon Emissions and Scenario Analyses of Low-Carbon Transformation in 2020 and 2030 for Zhejiang Province," Energies, MDPI, vol. 10(11), pages 1-16, October.
    10. Wang, Chen & Engels, Anita & Wang, Zhaohua, 2018. "Overview of research on China's transition to low-carbon development: The role of cities, technologies, industries and the energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1350-1364.
    11. Pengyan Zhang & Jianjian He & Xin Hong & Wei Zhang & Chengzhe Qin & Bo Pang & Yanyan Li & Yu Liu, 2017. "Regional-Level Carbon Emissions Modelling and Scenario Analysis: A STIRPAT Case Study in Henan Province, China," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    12. Nishitateno, Shuhei & Burke, Paul J., 2021. "Willingness to pay for clean air: Evidence from diesel vehicle registration restrictions in Japan," Regional Science and Urban Economics, Elsevier, vol. 88(C).
    13. Sinha, Avik & Shahbaz, Muhammad, 2018. "Estimation of Environmental Kuznets Curve for CO2 emission: Role of renewable energy generation in India," Renewable Energy, Elsevier, vol. 119(C), pages 703-711.
    14. Tymon Słoczyński, 2015. "The Oaxaca–Blinder Unexplained Component as a Treatment Effects Estimator," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(4), pages 588-604, August.
    15. Kodjo Adandohoin & Vigninou Gammadigbe, 2022. "The revenue efficiency consequences of the announcement of a tax transition reform: The case of WAEMU countries," African Development Review, African Development Bank, vol. 34(S1), pages 195-218, July.
    16. Lixiao Zhang & Qiuhong Hu & Fan Zhang, 2014. "Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    17. Muhammad, Shahbaz & Lean, Hooi Hooi & Muhammad, Shahbaz Shabbir, 2011. "Environmental Kuznets Curve and the role of energy consumption in Pakistan," MPRA Paper 34929, University Library of Munich, Germany, revised 22 Nov 2011.
    18. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    19. Di Matteo, Dante & Mariotti, Ilaria & Rossi, Federica, 2023. "Transport infrastructure and economic performance: An evaluation of the Milan-Bologna high-speed rail corridor," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    20. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:58:y:2021:i:c:s0275531921000714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.