IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v74y2021ics0301420721002786.html
   My bibliography  Save this article

Extended exergy accounting for smelting and pressing of metals industry in China

Author

Listed:
  • Qi, Hai
  • Dong, Zhiliang
  • Dong, Shaohui
  • Sun, Xiaotian
  • Zhao, Yiran
  • Li, Yu

Abstract

Rapid expansion, relative shortage resources supply and environmental impact threat the sustainable development of the smelting and pressing of metals sector. Fluxes of energy, materials, environmental remediation expenses, labor, and capital were quantified by Joules based on the second-law thermodynamics during years 1992–2015. The accounting method that quantifies the component of the extended exergy fluxes and the proportion in the total inputs was used to analyze this energy-intensive industry. Net per-capita exergy resource input and labor production efficiency are described the conversion of natural resource exergy to economic output and labor efficiency. The results showed the following: (1) the smelting and pressing of metals sector expands rapidly; the ferrous metals industry accounts the large part of the overall metals industry and the nonferrous metals industry grows faster than the ferrous metals industry. Natural resource exergy, especially energy exergy, dominates the investments of the metals industry. (2) Capital exergy and labor exergy decrease in the smelting and pressing of metals industry, while they increase in the nonferrous metals industry and decrease in the ferrous metals industry. Environmental exergy declines in both the nonferrous metals and ferrous metals industries. (3) The comparison of the nonferrous metals and ferrous metals industries with China as a whole, conducted by applying the two indicators for efficiency, shows that the two industries are exceeding the whole country in efficiency and have made great progress. In addition, the extended exergy analysis of smelting and pressing of metals industry is helpful in the identification of resource consumption and environmental cost in sustainable development view.

Suggested Citation

  • Qi, Hai & Dong, Zhiliang & Dong, Shaohui & Sun, Xiaotian & Zhao, Yiran & Li, Yu, 2021. "Extended exergy accounting for smelting and pressing of metals industry in China," Resources Policy, Elsevier, vol. 74(C).
  • Handle: RePEc:eee:jrpoli:v:74:y:2021:i:c:s0301420721002786
    DOI: 10.1016/j.resourpol.2021.102267
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420721002786
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2021.102267?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ediger, Volkan S. & Camdali, Unal, 2007. "Energy and exergy efficiencies in Turkish transportation sector, 1988-2004," Energy Policy, Elsevier, vol. 35(2), pages 1238-1244, February.
    2. Palacios, Jose-Luis & Calvo, Guiomar & Valero, Alicia & Valero, Antonio, 2018. "The cost of mineral depletion in Latin America: An exergoecology view," Resources Policy, Elsevier, vol. 59(C), pages 117-124.
    3. Stefano Schiavo & Javier Reyes & Giorgio Fagiolo, 2010. "International trade and financial integration: a weighted network analysis," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 389-399.
    4. Koroneos, Christopher J. & Nanaki, Evanthia A. & Xydis, George A., 2011. "Exergy analysis of the energy use in Greece," Energy Policy, Elsevier, vol. 39(5), pages 2475-2481, May.
    5. Ahamed, J.U. & Saidur, R. & Masjuki, H.H. & Mekhilef, S. & Ali, M.B. & Furqon, M.H., 2011. "An application of energy and exergy analysis in agricultural sector of Malaysia," Energy Policy, Elsevier, vol. 39(12), pages 7922-7929.
    6. Valero, Alicia & Valero, Antonio & Martínez, Amaya, 2010. "Inventory of the exergy resources on earth including its mineral capital," Energy, Elsevier, vol. 35(2), pages 989-995.
    7. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2019. "The sustainability of China’s metal industries: features, challenges and future focuses," Resources Policy, Elsevier, vol. 60(C), pages 215-224.
    8. Li, Tianjiao & Wang, Anjian & Xing, Wanli & Li, Ying & Zhou, Yanjing, 2019. "Assessing mineral extraction and trade in China from 1992 to 2015: A comparison of material flow analysis and exergoecological approach," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    9. Gasparatos, Alexandros & El-Haram, Mohamed & Horner, Malcolm, 2009. "Assessing the sustainability of the UK society using thermodynamic concepts: Part 1," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1074-1081, June.
    10. Wall, Goran, 1987. "Exergy conversion in the Swedish society," Resources and Energy, Elsevier, vol. 9(1), pages 55-73, June.
    11. Ji, Xi & Chen, G.Q. & Chen, B. & Jiang, M.M., 2009. "Exergy-based assessment for waste gas emissions from Chinese transportation," Energy Policy, Elsevier, vol. 37(6), pages 2231-2240, June.
    12. Jaber, J.O. & Al-Ghandoor, A. & Sawalha, S.A., 2008. "Energy analysis and exergy utilization in the transportation sector of Jordan," Energy Policy, Elsevier, vol. 36(8), pages 2985-2990, August.
    13. Bühler, Fabian & Nguyen, Tuong-Van & Elmegaard, Brian, 2016. "Energy and exergy analyses of the Danish industry sector," Applied Energy, Elsevier, vol. 184(C), pages 1447-1459.
    14. Gasparatos, Alexandros & El-Haram, Mohamed & Horner, Malcolm, 2009. "Assessing the sustainability of the UK society using thermodynamic concepts: Part 2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 956-970, June.
    15. Seckin, C. & Sciubba, E. & Bayulken, A.R., 2012. "An application of the extended exergy accounting method to the Turkish society, year 2006," Energy, Elsevier, vol. 40(1), pages 151-163.
    16. Warr, B.S. & Ayres, R.U., 2010. "Evidence of causality between the quantity and quality of energy consumption and economic growth," Energy, Elsevier, vol. 35(4), pages 1688-1693.
    17. Ji, Xi & Chen, G.Q., 2006. "Exergy analysis of energy utilization in the transportation sector in China," Energy Policy, Elsevier, vol. 34(14), pages 1709-1719, September.
    18. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    19. Szargut, J., 2002. "Application of exergy for the determination of the pro-ecological tax replacing the actual personal taxes," Energy, Elsevier, vol. 27(4), pages 379-389.
    20. Sciubba, Enrico, 2011. "A revised calculation of the econometric factors α- and β for the Extended Exergy Accounting method," Ecological Modelling, Elsevier, vol. 222(4), pages 1060-1066.
    21. Dai, Jing & Chen, Bin & Sciubba, Enrico, 2014. "Extended exergy based ecological accounting for the transportation sector in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 229-237.
    22. Chen, G.Q. & Jiang, M.M. & Yang, Z.F. & Chen, B. & Ji, Xi & Zhou, J.B., 2009. "Exergetic assessment for ecological economic system: Chinese agriculture," Ecological Modelling, Elsevier, vol. 220(3), pages 397-410.
    23. Warr, Benjamin & Ayres, Robert & Eisenmenger, Nina & Krausmann, Fridolin & Schandl, Heinz, 2010. "Energy use and economic development: A comparative analysis of useful work supply in Austria, Japan, the United Kingdom and the US during 100Â years of economic growth," Ecological Economics, Elsevier, vol. 69(10), pages 1904-1917, August.
    24. Chen, B. & Chen, G.Q., 2006. "Exergy analysis for resource conversion of the Chinese Society 1993 under the material product system," Energy, Elsevier, vol. 31(8), pages 1115-1150.
    25. Dincer, I. & Hussain, M. M. & Al-Zaharnah, I., 2004. "Energy and exergy use in public and private sector of Saudi Arabia," Energy Policy, Elsevier, vol. 32(14), pages 1615-1624, September.
    26. Dincer, I. & Hussain, M. M. & Al-Zaharnah, I., 2005. "Energy and exergy utilization in agricultural sector of Saudi Arabia," Energy Policy, Elsevier, vol. 33(11), pages 1461-1467, July.
    27. Sciubba, Enrico, 2003. "Cost analysis of energy conversion systems via a novel resource-based quantifier," Energy, Elsevier, vol. 28(5), pages 457-477.
    28. Wall, Göran & Sciubba, Enrico & Naso, Vincenzo, 1994. "Exergy use in the Italian society," Energy, Elsevier, vol. 19(12), pages 1267-1274.
    29. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
    30. Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.
    31. Ayres, Robert U & Ayres, Leslie W & Warr, Benjamin, 2003. "Exergy, power and work in the US economy, 1900–1998," Energy, Elsevier, vol. 28(3), pages 219-273.
    32. Bligh, David C. & Ismet Ugursal, V., 2012. "Extended exergy analysis of the economy of Nova Scotia, Canada," Energy, Elsevier, vol. 44(1), pages 878-890.
    33. Zhang, Bo & Chen, G.Q., 2010. "Physical sustainability assessment for the China society: Exergy-based systems account for resources use and environmental emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1527-1545, August.
    34. Nakićenović, Nebojsa & Gilli, Paul Viktor & Kurz, Rainer, 1996. "Regional and global exergy and energy efficiencies," Energy, Elsevier, vol. 21(3), pages 223-237.
    35. Ptasinski, K.J. & Koymans, M.N. & Verspagen, H.H.G., 2006. "Performance of the Dutch Energy Sector based on energy, exergy and Extended Exergy Accounting," Energy, Elsevier, vol. 31(15), pages 3135-3144.
    36. Saidur, R. & Sattar, M.A. & Masjuki, H.H. & Abdessalam, H. & Shahruan, B.S., 2007. "Energy and exergy analysis at the utility and commercial sectors of Malaysia," Energy Policy, Elsevier, vol. 35(3), pages 1956-1966, March.
    37. Milia, Daniela & Sciubba, Enrico, 2006. "Exergy-based lumped simulation of complex systems: An interactive analysis tool," Energy, Elsevier, vol. 31(1), pages 100-111.
    38. Utlu, Zafer & Hepbasli, Arif, 2006. "Assessment of the energy utilization efficiency in the Turkish transportation sector between 2000 and 2020 using energy and exergy analysis method," Energy Policy, Elsevier, vol. 34(13), pages 1611-1618, September.
    39. Yang, J. & Chen, B., 2014. "Extended exergy-based sustainability accounting of a household biogas project in rural China," Energy Policy, Elsevier, vol. 68(C), pages 264-272.
    40. Gabriel Carmona, Luis & Whiting, Kai & Valero, Alicia & Valero, Antonio, 2015. "Colombian mineral resources: An analysis from a Thermodynamic Second Law perspective," Resources Policy, Elsevier, vol. 45(C), pages 23-28.
    41. Wall, Göran, 1990. "Exergy conversion in the Japanese society," Energy, Elsevier, vol. 15(5), pages 435-444.
    42. Chen, G.Q. & Chen, B., 2009. "Extended-exergy analysis of the Chinese society," Energy, Elsevier, vol. 34(9), pages 1127-1144.
    43. Ertesvåg, Ivar S & Mielnik, Michal, 2000. "Exergy analysis of the Norwegian society," Energy, Elsevier, vol. 25(10), pages 957-973.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmadi, Mohammad Mahdi & Keyhani, Alireza & Rosen, Marc A. & Lam, Su Shiung & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2022. "Towards sustainable net-zero districts using the extended exergy accounting concept," Renewable Energy, Elsevier, vol. 197(C), pages 747-764.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricardo Manso & Tânia Sousa & Tiago Domingos, 2017. "Do the Different Exergy Accounting Methodologies Provide Consistent or Contradictory Results? A Case Study with the Portuguese Agricultural, Forestry and Fisheries Sector," Energies, MDPI, vol. 10(8), pages 1-31, August.
    2. Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.
    3. Serrenho, André Cabrera & Warr, Benjamin & Sousa, Tânia & Ayres, Robert U. & Domingos, Tiago, 2016. "Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009," Structural Change and Economic Dynamics, Elsevier, vol. 36(C), pages 1-21.
    4. Seckin, C. & Sciubba, E. & Bayulken, A.R., 2012. "An application of the extended exergy accounting method to the Turkish society, year 2006," Energy, Elsevier, vol. 40(1), pages 151-163.
    5. An, Qier & An, Haizhong & Wang, Lang & Huang, Xuan, 2014. "Structural and regional variations of natural resource production in China based on exergy," Energy, Elsevier, vol. 74(C), pages 67-77.
    6. Zhang, Bo & Chen, G.Q., 2010. "Physical sustainability assessment for the China society: Exergy-based systems account for resources use and environmental emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1527-1545, August.
    7. Song, Dan & Lin, Ling & Wu, Ye, 2019. "Extended exergy accounting for a typical cement industry in China," Energy, Elsevier, vol. 174(C), pages 678-686.
    8. Ricardo Manso & Tânia Sousa & Tiago Domingos, 2018. "The Way Forward in Quantifying Extended Exergy Efficiency," Energies, MDPI, vol. 11(10), pages 1-32, September.
    9. Byers, Edward A. & Gasparatos, Alexandros & Serrenho, André C., 2015. "A framework for the exergy analysis of future transport pathways: Application for the United Kingdom transport system 2010–2050," Energy, Elsevier, vol. 88(C), pages 849-862.
    10. Yang, J. & Chen, B., 2014. "Extended exergy-based sustainability accounting of a household biogas project in rural China," Energy Policy, Elsevier, vol. 68(C), pages 264-272.
    11. Dai, Jing & Chen, Bin & Sciubba, Enrico, 2014. "Extended exergy based ecological accounting for the transportation sector in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 229-237.
    12. Jadhao, Sachin B. & Pandit, Aniruddha B. & Bakshi, Bhavik R., 2017. "The evolving metabolism of a developing economy: India’s exergy flows over four decades," Applied Energy, Elsevier, vol. 206(C), pages 851-857.
    13. Hai Qi & Haizhong An & Xiaoqing Hao & Weiqiong Zhong & Yanbing Zhang, 2014. "Analyzing the International Exergy Flow Network of Ferrous Metal Ores," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-16, September.
    14. Seckin, Candeniz & Bayulken, Ahmet R., 2013. "Extended Exergy Accounting (EEA) analysis of municipal wastewater treatment – Determination of environmental remediation cost for municipal wastewater," Applied Energy, Elsevier, vol. 110(C), pages 55-64.
    15. Chen, G.Q. & Ji, Xi, 2007. "Chemical exergy based evaluation of water quality," Ecological Modelling, Elsevier, vol. 200(1), pages 259-268.
    16. Utlu, Zafer & Hepbasli, Arif, 2008. "Energetic and exergetic assessment of the industrial sector at varying dead (reference) state temperatures: A review with an illustrative example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1277-1301, June.
    17. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
    18. Zhang, M. & Li, G. & Mu, H.L. & Ning, Y.D., 2011. "Energy and exergy efficiencies in the Chinese transportation sector, 1980–2009," Energy, Elsevier, vol. 36(2), pages 770-776.
    19. Bligh, David C. & Ismet Ugursal, V., 2012. "Extended exergy analysis of the economy of Nova Scotia, Canada," Energy, Elsevier, vol. 44(1), pages 878-890.
    20. Sousa, Tânia & Brockway, Paul E. & Cullen, Jonathan M. & Henriques, Sofia Teives & Miller, Jack & Serrenho, André Cabrera & Domingos, Tiago, 2017. "The Need for Robust, Consistent Methods in Societal Exergy Accounting," Ecological Economics, Elsevier, vol. 141(C), pages 11-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:74:y:2021:i:c:s0301420721002786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.