Advanced Search
MyIDEAS: Login

Physical sustainability assessment for the China society: Exergy-based systems account for resources use and environmental emissions

Contents:

Author Info

  • Zhang, Bo
  • Chen, G.Q.
Registered author(s):

    Abstract

    As a physical assessment of the sustainability of the China society, presented in this paper is an exergy-based systems account for resources use and environmental emissions of the China society in 2006 as the most recent year with statistics availability. Exergy analysis is applied to elucidate the resources flows from the natural environment into the society, between other countries or regions and the society, between the sectors of the society, and the emissions outflows into the natural environment from different sectors. For the China society broken down into seven sectors (i.e., extraction, conversion, agriculture, industry, transportation, tertiary and households) as one of the most complicated cases, systems account of environmental emissions as greenhouse gases and "three wastes" is carried out for the first time, combined with an updated resources account. The total societal exergy consumption amounts to 101.1Â EJ, of which 93.6% is due to resources use accounted as 94.6Â EJ, of which 23.2% is by the industry sector, 22.8% by conversion, 20.4% by households, 12.3% by agriculture, 9.0% by tertiary, 6.9% by extraction and 5.4% by transport, and 6.4% due to environmental emissions accounted as 6481.6Â PJ, including greenhouse gas emissions of 5706.1Â PJ, with the highly remarkable fraction of 49.05% from CH4 of the same importance as 50.91% from CO2 and only 0.04% from N2O, and "three wastes" emissions of only 775.5Â PJ. The extraction sector is shown as the leading emitter with 32.6% of the total emissions, followed by the industry with 20.0%, agriculture with 17.3%, and conversion sector with 16.8%. To characterize the network performance in context of environmental resources from a systems ecological perspective, exergy-based ecological efficiency and resources conversion coefficient are found as 88.8% and 91.3% for the extraction sector, 29.0% and 30.0% for the conversion sector, 31.5% and 33.5% for the agriculture sector, 34.8% and 36.1% for the industry sector, 16.3% and 17.3% for the transportation sector, 38.4% and 38.5% for the tertiary sector, and only 1.3% and 1.3% for the households sector, respectively. Comparisons with other societies and with China society in previous years are made to further illustrate the physical sustainability of the societal system on the international and development horizons.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6VMY-4YBV1M5-3/2/02c8c1abe0cb185cd3c09c4d61c3536a
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Renewable and Sustainable Energy Reviews.

    Volume (Year): 14 (2010)
    Issue (Month): 6 (August)
    Pages: 1527-1545

    as in new window
    Handle: RePEc:eee:rensus:v:14:y:2010:i:6:p:1527-1545

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
    Web: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic

    Related research

    Keywords: Exergy Natural resources Environmental emissions Greenhouse gas emissions Sustainability;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Chen, G.Q. & Yang, Q. & Zhao, Y.H., 2011. "Renewability of wind power in China: A case study of nonrenewable energy cost and greenhouse gas emission by a plant in Guangxi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2322-2329, June.
    2. Chen, G.Q. & Zhang, Bo, 2010. "Greenhouse gas emissions in China 2007: Inventory and input-output analysis," Energy Policy, Elsevier, vol. 38(10), pages 6180-6193, October.
    3. Zhang, Bo & Chen, G.Q. & Li, J.S. & Tao, L., 2014. "Methane emissions of energy activities in China 1980–2007," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 11-21.
    4. Xia, X.H. & Huang, G.T. & Chen, G.Q. & Zhang, Bo & Chen, Z.M. & Yang, Q., 2011. "Energy security, efficiency and carbon emission of Chinese industry," Energy Policy, Elsevier, vol. 39(6), pages 3520-3528, June.
    5. Zhang, Bo & Chen, G.Q., 2014. "Methane emissions in China 2007," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 886-902.
    6. BoroumandJazi, G. & Saidur, R. & Rismanchi, B. & Mekhilef, S., 2012. "A review on the relation between the energy and exergy efficiency analysis and the technical characteristic of the renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3131-3135.
    7. Zhang, Bo & Chen, G.Q., 2010. "Methane emissions by Chinese economy: Inventory and embodiment analysis," Energy Policy, Elsevier, vol. 38(8), pages 4304-4316, August.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:6:p:1527-1545. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.