IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v97y2016icp220-234.html
   My bibliography  Save this article

A review of low carbon fuel policies: Principles, program status and future directions

Author

Listed:
  • Yeh, Sonia
  • Witcover, Julie
  • Lade, Gabriel E.
  • Sperling, Daniel

Abstract

A low carbon fuel standard (LCFS) is a market-based policy that specifies declining standards for the average lifecycle fuel carbon intensity (AFCI) of transportation fuels sold in a region. This paper: (i) compares transportation fuel carbon policies in terms of their economic efficiency, fuel price impacts, greenhouse gas emission reductions, and incentives for innovation; (ii) discusses key regulatory design features of LCFS policies; and (iii) provides an update on the implementation status of LCFS policies in California, the European Union, British Columbia, and Oregon. The economics literature finds that an intensity standard implicitly taxes emissions and subsidizes output. The output subsidy results in an intensity standard being inferior to a carbon tax in a first-best world, although the inefficiency can be corrected with a properly designed consumption tax (or mitigated by a properly designed carbon tax or cap-and-trade program). In California, from 2011 to 2015 the share of alternative fuels in the regulated transportation fuels pool increased by 30%, and the reported AFCI of all alternative fuels declined 21%. LCFS credit prices have varied considerably, rising to above $100/credit in the first half of 2016. LCFS programs in other jurisdictions share many features with California's, but have distinct provisions as well.

Suggested Citation

  • Yeh, Sonia & Witcover, Julie & Lade, Gabriel E. & Sperling, Daniel, 2016. "A review of low carbon fuel policies: Principles, program status and future directions," Energy Policy, Elsevier, vol. 97(C), pages 220-234.
  • Handle: RePEc:eee:enepol:v:97:y:2016:i:c:p:220-234
    DOI: 10.1016/j.enpol.2016.07.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516303901
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.07.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christensen, Adam & Siddiqui, Sauleh, 2015. "Fuel price impacts and compliance costs associated with the Renewable Fuel Standard (RFS)," Energy Policy, Elsevier, vol. 86(C), pages 614-624.
    2. Yeh, Sonia & Witcover, Julie & Bushnell, James, 2015. "Status Review of California’s Low Carbon Fuel Standard," Institute of Transportation Studies, Working Paper Series qt0780m6r0, Institute of Transportation Studies, UC Davis.
    3. Witcover, Julie & Yeh, Sonia & Sperling, Daniel, 2013. "Policy options to address global land use change from biofuels," Energy Policy, Elsevier, vol. 56(C), pages 63-74.
    4. Fullerton, Don & Metcalf, Gilbert E., 2002. "Tax incidence," Handbook of Public Economics, in: A. J. Auerbach & M. Feldstein (ed.), Handbook of Public Economics, edition 1, volume 4, chapter 26, pages 1787-1872, Elsevier.
    5. Farrell, Alexander E. & Sperling, Dan, 2007. "A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis," Institute of Transportation Studies, Working Paper Series qt8ng2h3x7, Institute of Transportation Studies, UC Davis.
    6. Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel, 2009. "Greenhouse Gas Reductions under Low Carbon Fuel Standards?," American Economic Journal: Economic Policy, American Economic Association, vol. 1(1), pages 106-146, February.
    7. Sperling, Dan & Yeh, Sonia, 2009. "Low Carbon Fuel Standards," Institute of Transportation Studies, Working Paper Series qt8834g64j, Institute of Transportation Studies, UC Davis.
    8. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    9. Farrell, Alexander & Sperling, Daniel, 2007. "A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis," Institute of Transportation Studies, Working Paper Series qt8xv635dc, Institute of Transportation Studies, UC Davis.
    10. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    11. Huang, Haixiao & Khanna, Madhu & Önal, Hayri & Chen, Xiaoguang, 2013. "Stacking low carbon policies on the renewable fuels standard: Economic and greenhouse gas implications," Energy Policy, Elsevier, vol. 56(C), pages 5-15.
    12. Greenblatt, Jeffery B., 2015. "Modeling California policy impacts on greenhouse gas emissions," Energy Policy, Elsevier, vol. 78(C), pages 158-172.
    13. Gabriel E Lade & C -Y Cynthia Lin Lawell & Aaron Smith, 2018. "Policy Shocks and Market-Based Regulations: Evidence from the Renewable Fuel Standard," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(3), pages 707-731.
    14. Chen, Xiaoguang & Huang, Haixiao & Khanna, Madhu & Önal, Hayri, 2014. "Alternative transportation fuel standards: Welfare effects and climate benefits," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 241-257.
    15. Farrell, Alexander & Sperling, Daniel, 2007. "A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis," Institute of Transportation Studies, Working Paper Series qt5245b5kx, Institute of Transportation Studies, UC Davis.
    16. Holland, Stephen P., 2012. "Emissions taxes versus intensity standards: Second-best environmental policies with incomplete regulation," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 375-387.
    17. Scarlat, Nicolae & Dallemand, Jean-François, 2011. "Recent developments of biofuels/bioenergy sustainability certification: A global overview," Energy Policy, Elsevier, vol. 39(3), pages 1630-1646, March.
    18. Deepak Rajagopal, 2014. "Consequential Life Cycle Assessment of Policy Vulnerability to Price Effects," Journal of Industrial Ecology, Yale University, vol. 18(2), pages 164-175, April.
    19. Jonathan E. Hughes & Christopher R. Knittel & Daniel Sperling, 2008. "Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand," The Energy Journal, International Association for Energy Economics, vol. 29(1), pages 113-134.
    20. Stephen P. Holland, Jonathan E. Hughes, Christopher R. Knittel, Nathan C. Parker, 2015. "Unintended Consequences of Carbon Policies: Transportation Fuels, Land-Use, Emissions, and Innovation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    21. Jonathan E. Hughes & Christopher R. Knittel & Daniel Sperling, 2008. "Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand," The Energy Journal, International Association for Energy Economics, vol. 29(1), pages 113-134.
    22. Morrison, Geoff M. & Witcover, Julie & Parker, Nathan C. & Fulton, Lew, 2016. "Three routes forward for biofuels: Incremental, leapfrog, and transitional," Energy Policy, Elsevier, vol. 88(C), pages 64-73.
    23. Rajagopal, D. & Plevin, Richard J., 2013. "Implications of market-mediated emissions and uncertainty for biofuel policies," Energy Policy, Elsevier, vol. 56(C), pages 75-82.
    24. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    25. Bruce A. Babcock & Sebastien Pouliot, 2014. "Feasibility and Cost of Increasing US Ethanol Consumption Beyond E10," Center for Agricultural and Rural Development (CARD) Publications 14-pb17, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    26. Cameron Hepburn, 2006. "Regulation by Prices, Quantities, or Both: A Review of Instrument Choice," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 22(2), pages 226-247, Summer.
    27. Steven Rose & Elmar Kriegler & Ruben Bibas & Katherine Calvin & Alexander Popp & Detlef Vuuren & John Weyant, 2014. "Bioenergy in energy transformation and climate management," Climatic Change, Springer, vol. 123(3), pages 477-493, April.
    28. Mark W. Rosegrant & Tingju Zhu & Siwa Msangi & Timothy Sulser, 2008. "Global Scenarios for Biofuels: Impacts and Implications ," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 30(3), pages 495-505.
    29. Sperling, Daniel & Farrell, Alexander, 2007. "A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis," Institute of Transportation Studies, Working Paper Series qt5hv693r2, Institute of Transportation Studies, UC Davis.
    30. Sexton, Steven E & Rajagapol, Deepak & Hochman, Gal & Zilberman, David D & Roland-Holst, David, 2009. "Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt82t5055w, Department of Agricultural & Resource Economics, UC Berkeley.
    31. Lapan, Harvey & Moschini, GianCarlo, 2012. "Second-best biofuel policies and the welfare effects of quantity mandates and subsidies," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 224-241.
    32. Yang, Christopher & Yeh, Sonia & Zakerinia, Saleh & Ramea, Kalai & McCollum, David, 2015. "Achieving California's 80% greenhouse gas reduction target in 2050: Technology, policy and scenario analysis using CA-TIMES energy economic systems model," Energy Policy, Elsevier, vol. 77(C), pages 118-130.
    33. Geoffrey Morrison & Sonia Yeh & Anthony Eggert & Christopher Yang & James Nelson & Jeffery Greenblatt & Raphael Isaac & Mark Jacobson & Josiah Johnston & Daniel Kammen & Ana Mileva & Jack Moore & Davi, 2015. "Comparison of low-carbon pathways for California," Climatic Change, Springer, vol. 131(4), pages 545-557, August.
    34. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    35. Helfand, Gloria E, 1992. "Erratum: Standards versus Standards: The Effects of Different Pollution Restrictions," American Economic Review, American Economic Association, vol. 82(1), pages 369-369, March.
    36. Farrell, Alexander E. & Sperling, Dan, 2007. "A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis," Institute of Transportation Studies, Working Paper Series qt6j67z9w6, Institute of Transportation Studies, UC Davis.
    37. John DeCicco, 2013. "Biofuel’s carbon balance: doubts, certainties and implications," Climatic Change, Springer, vol. 121(4), pages 801-814, December.
    38. Matthew S Clancy & GianCarlo Moschini, 2018. "Mandates and the Incentive for Environmental Innovation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(1), pages 198-219.
    39. Yeh, Sonia & Witcover, Julie, 2014. "Status Review of California’s Low Carbon Fuel Standard," Institute of Transportation Studies, Working Paper Series qt4tk3h6k8, Institute of Transportation Studies, UC Davis.
    40. Farrell, Alexander E. & Sperling, Daniel & Brandt, A.R. & Eggert, A. & Farrell, A.E. & Haya, B.K. & Hughes, J. & Jenkins, B.M. & Jones, A.D. & Kammen, D.M. & Knittel, C.R. & Melaina, M.W. & O'Hare, M., 2007. "A Low-Carbon Fuel Standard for California Part 2: Policy Analysis," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1hm6k089, Institute of Transportation Studies, UC Berkeley.
    41. Bruce A. Babcock & Zabid Iqbal, 2014. "Using Recent Land Use Changes to Validate Land Use Change Models," Center for Agricultural and Rural Development (CARD) Publications 14-sr109, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    42. Lade, Gabriel E. & Lin, C.-Y. Cynthia & Smith, Aaron, 2015. "Ex Post Costs and Renewable Identification Number (RIN) Prices under the Renewable Fuel Standard," RFF Working Paper Series dp-15-22, Resources for the Future.
    43. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    44. Sperling, Daniel & Gordon, Deborah, 2009. "Two Billion Cars: Driving Toward Sustainability," OUP Catalogue, Oxford University Press, number 9780195376647.
    45. Leiby, Paul N. & Rubin, Jonathan, 2013. "Energy security implications of a national low carbon fuel standard," Energy Policy, Elsevier, vol. 56(C), pages 29-40.
    46. Farrell, Alexander E. & Sperling, Daniel & Arons, S.M. & Brandt, A.R. & Delucchi, M.A. & Eggert, A. & Farrell, A.E. & Haya, B.K. & Hughes, J. & Jenkins, B.M. & Jones, A.D. & Kammen, D.M. & Kaffka, S.R, 2007. "A Low-Carbon Fuel Standard for California Part 1: Technical Analysis," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8zm8d3wj, Institute of Transportation Studies, UC Berkeley.
    47. Christopher R. Knittel & Ben S. Meiselman & James H. Stock, 2017. "The Pass-Through of RIN Prices to Wholesale and Retail Fuels under the Renewable Fuel Standard," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(4), pages 1081-1119.
    48. David Laborde & Hugo Valin, 2012. "MODELING LAND-USE CHANGES IN A GLOBAL CGE: ASSESSING THE EU BIOFUEL MANDATES WITH THE MIRAGE-BioF MODEL," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-39.
    49. Kocoloski, Matt & Mullins, Kimberley A. & Venkatesh, Aranya & Michael Griffin, W., 2013. "Addressing uncertainty in life-cycle carbon intensity in a national low-carbon fuel standard," Energy Policy, Elsevier, vol. 56(C), pages 41-50.
    50. Michael Grubb & David Newbery, 2007. "Pricing Carbon for Electricity Generation: National and International Dimensions," Working Papers EPRG 0722, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    51. Yeh, Sonia & Witcover, Julie, 2014. "Status Review of California’s Low Carbon Fuel Standard July 2014 Issue," Institute of Transportation Studies, Working Paper Series qt7h50h016, Institute of Transportation Studies, UC Davis.
    52. Rajagopal, Deepak & Zilberman, David, 2013. "On market-mediated emissions and regulations on life cycle emissions," Ecological Economics, Elsevier, vol. 90(C), pages 77-84.
    53. Christensen, Adam & Hobbs, Benjamin, 2016. "A model of state and federal biofuel policy: Feasibility assessment of the California Low Carbon Fuel Standard," Applied Energy, Elsevier, vol. 169(C), pages 799-812.
    54. Lade, Gabriel E & Lawell, C-Y Cynthia Lin, 2015. "Mandating green: On the Design of Renewable Fuel Policies and Cost Containment Mechanisms," Institute of Transportation Studies, Working Paper Series qt5zj382t4, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel E. Lade & James Bushnell, 2016. "Fuel Subsidy Pass-Through and Market Structure: Evidence from the Renewable Fuel Standard," Center for Agricultural and Rural Development (CARD) Publications 16-wp570, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    2. Shayegh, Soheil & Sanchez, Daniel L., 2021. "Impact of market design on cost-effectiveness of renewable portfolio standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    3. Spatari, S. & Larnaudie, V. & Mannoh, I. & Wheeler, M.C. & Macken, N.A. & Mullen, C.A. & Boateng, A.A., 2020. "Environmental, exergetic and economic tradeoffs of catalytic- and fast pyrolysis-to-renewable diesel," Renewable Energy, Elsevier, vol. 162(C), pages 371-380.
    4. Witcover, Julie, 2021. "What Happened and Will Happen with Biofuels? Review and Prospects for Non-Conventional Biofuels in California and the U.S.: Supply, Cost, and Potential GHG Reductions," Institute of Transportation Studies, Working Paper Series qt7624q040, Institute of Transportation Studies, UC Davis.
    5. Axsen, Jonn & Wolinetz, Michael, 2023. "What does a low-carbon fuel standard contribute to a policy mix? An interdisciplinary review of evidence and research gaps," Transport Policy, Elsevier, vol. 133(C), pages 54-63.
    6. Mark Purdon & Julie Witcover & Colin Murphy & Sonya Ziaja & Mark Winfield & Genevieve Giuliano & Charles Séguin & Colleen Kaiser & Jacques Papy & Lewis Fulton, 2021. "Climate and transportation policy sequencing in California and Quebec," Review of Policy Research, Policy Studies Organization, vol. 38(5), pages 596-630, September.
    7. Yeh, Sonia & Burtraw, Dallas & Sterner, Thomas & Greene, David, 2021. "Tradable performance standards in the transportation sector," Energy Economics, Elsevier, vol. 102(C).
    8. Witcover, Julie, 2018. "Status Review of California’s Low Carbon Fuel Standard, 2011–2018 Q1 September 2018 Issue," Institute of Transportation Studies, Working Paper Series qt445815cd, Institute of Transportation Studies, UC Davis.
    9. Ma, Xuejiao & Wang, Yong & Wang, Chen, 2017. "Low-carbon development of China's thermal power industry based on an international comparison: Review, analysis and forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 942-970.
    10. Esteban Lopez-Arboleda & Alfonso T. Sarmiento & Laura M. Cardenas, 2021. "Systemic approach for integration of sustainability in evaluation of public policies for adoption of electric vehicles," Systemic Practice and Action Research, Springer, vol. 34(4), pages 399-417, August.
    11. Zhao, Qiankun & Cai, Ximing & Mischo, William & Ma, Liyuan, 2020. "How do the research and public communities view biofuel development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Rhodes, Ekaterina & Scott, William A. & Jaccard, Mark, 2021. "Designing flexible regulations to mitigate climate change: A cross-country comparative policy analysis," Energy Policy, Elsevier, vol. 156(C).
    13. Hu, Kejia & Chen, Yuche, 2019. "Equilibrium fuel supply and carbon credit pricing under market competition and environmental regulations: A California case study," Applied Energy, Elsevier, vol. 236(C), pages 815-824.
    14. Sokołowski, Maciej M. & Heffron, Raphael J., 2022. "Defining and conceptualising energy policy failure: The when, where, why, and how," Energy Policy, Elsevier, vol. 161(C).
    15. Shen, Neng & Deng, Rumeng & Liao, Haolan & Shevchuk, Oleksandr, 2020. "Mapping renewable energy subsidy policy research published from 1997 to 2018: A scientometric review," Utilities Policy, Elsevier, vol. 64(C).
    16. Mazzone, Daniel & Witcover, Julie & Murphy, Colin W, 2021. "Multijurisdictional Status Review of Low Carbon Fuel Standards, 2010–2020 Q2: California, Oregon, and British Columbia," Institute of Transportation Studies, Working Paper Series qt080390x8, Institute of Transportation Studies, UC Davis.
    17. Vahid Mohamad Taghvaee & Abbas Assari Arani & Susanne Soretz & Lotfali Agheli, 2023. "Diesel demand elasticities and sustainable development pillars of economy, environment and social (health): comparing two strategies of subsidy removal and energy efficiency," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2285-2315, March.
    18. Gabriel E. Lade & James Bushnell, 2019. "Fuel Subsidy Pass-Through and Market Structure: Evidence from the Renewable Fuel Standard," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(3), pages 563-592.
    19. Faissal Jelti & Amine Allouhi & Kheira Anissa Tabet Aoul, 2023. "Transition Paths towards a Sustainable Transportation System: A Literature Review," Sustainability, MDPI, vol. 15(21), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lade, Gabriel E. & Lin Lawell, C.-Y. Cynthia, 2015. "The design and economics of low carbon fuel standards," Research in Transportation Economics, Elsevier, vol. 52(C), pages 91-99.
    2. Axsen, Jonn & Wolinetz, Michael, 2023. "What does a low-carbon fuel standard contribute to a policy mix? An interdisciplinary review of evidence and research gaps," Transport Policy, Elsevier, vol. 133(C), pages 54-63.
    3. Derek Lemoine, 2017. "Escape from Third-Best: Rating Emissions for Intensity Standards," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 789-821, August.
    4. Huseynov, Samir & Palma, Marco A., 2018. "Does California’s LCFS Reduce CO2 Emissions?," 2018 Annual Meeting, August 5-7, Washington, D.C. 274200, Agricultural and Applied Economics Association.
    5. Holland, Stephen P., 2012. "Emissions taxes versus intensity standards: Second-best environmental policies with incomplete regulation," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 375-387.
    6. Plevin, Richard J. & Delucchi, Mark A. & O’Hare, Michael, 2017. "Fuel carbon intensity standards may not mitigate climate change," Energy Policy, Elsevier, vol. 105(C), pages 93-97.
    7. Rubin, Jonathan & Leiby, Paul N., 2013. "Tradable credits system design and cost savings for a national low carbon fuel standard for road transport," Energy Policy, Elsevier, vol. 56(C), pages 16-28.
    8. Milazzo, M.F. & Spina, F. & Cavallaro, S. & Bart, J.C.J., 2013. "Sustainable soy biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 806-852.
    9. Leighty, Wayne & Ogden, Joan M. & Yang, Christopher, 2012. "Modeling transitions in the California light-duty vehicles sector to achieve deep reductions in transportation greenhouse gas emissions," Energy Policy, Elsevier, vol. 44(C), pages 52-67.
    10. Creutzig, Felix & McGlynn, Emily & Minx, Jan & Edenhofer, Ottmar, 2011. "Climate policies for road transport revisited (I): Evaluation of the current framework," Energy Policy, Elsevier, vol. 39(5), pages 2396-2406, May.
    11. Tittmann, P.W. & Parker, N.C. & Hart, Q.J. & Jenkins, B.M., 2010. "A spatially explicit techno-economic model of bioenergy and biofuels production in California," Journal of Transport Geography, Elsevier, vol. 18(6), pages 715-728.
    12. Yongxi (Eric) Huang & Yueyue Fan & Chien-Wei Chen, 2014. "An Integrated Biofuel Supply Chain to Cope with Feedstock Seasonality and Uncertainty," Transportation Science, INFORMS, vol. 48(4), pages 540-554, November.
    13. Fan, Yueyue & Huang, Yongxi & Chen, Chien-Wei, 2012. "Multistage Infrastructure System Design: An Integrated Biofuel Supply Chain against Feedstock Seasonality and Uncertainty," Institute of Transportation Studies, Working Paper Series qt9g8413m5, Institute of Transportation Studies, UC Davis.
    14. Fischer, Carolyn & Salant, Stephen W., 2017. "Balancing the carbon budget for oil: The distributive effects of alternative policies," European Economic Review, Elsevier, vol. 99(C), pages 191-215.
    15. Yeh, Sonia & Burtraw, Dallas & Sterner, Thomas & Greene, David, 2021. "Tradable performance standards in the transportation sector," Energy Economics, Elsevier, vol. 102(C).
    16. Gang Tian & Jian Shi & Licheng Sun & Xingle Long & Benhai Guo, 2017. "Dynamic changes in the energy–carbon performance of Chinese transportation sector: a meta-frontier non-radial directional distance function approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 585-607, November.
    17. Gabriel E Lade & C -Y Cynthia Lin Lawell & Aaron Smith, 2018. "Policy Shocks and Market-Based Regulations: Evidence from the Renewable Fuel Standard," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(3), pages 707-731.
    18. Yeh, Sonia & Sperling, Daniel, 2010. "Low carbon fuel standards: Implementation scenarios and challenges," Energy Policy, Elsevier, vol. 38(11), pages 6955-6965, November.
    19. Kammen, Daniel M. & Farrell, Alexander E & Plevin, Richard J & Jones, Andrew & Nemet, Gregory F & Delucchi, Mark, 2008. "Energy and Greenhouse Gas Impacts of Biofuels: A Framework for Analysis," Institute of Transportation Studies, Working Paper Series qt5qw5g6q2, Institute of Transportation Studies, UC Davis.
    20. Dallas Burtraw, 2008. "Regulating CO 2 in electricity markets: sources or consumers?," Climate Policy, Taylor & Francis Journals, vol. 8(6), pages 588-606, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:97:y:2016:i:c:p:220-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.