IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v78y2015icp158-172.html
   My bibliography  Save this article

Modeling California policy impacts on greenhouse gas emissions

Author

Listed:
  • Greenblatt, Jeffery B.

Abstract

This paper examines policy and technology scenarios in California, emphasizing greenhouse gas (GHG) emissions in 2020 and 2030. Using CALGAPS, a new, validated model simulating GHG and criteria pollutant emissions in California from 2010 to 2050, four scenarios were developed: Committed Policies (S1), Uncommitted Policies (S2), Potential Policy and Technology Futures (S3), and Counterfactual (S0), which omits all GHG policies. Forty-nine individual policies were represented. For S1–S3, GHG emissions fall below the AB 32 policy 2020 target [427 million metric tons CO2 equivalent (MtCO2e)yr−1], indicating that committed policies may be sufficient to meet mandated reductions. In 2030, emissions span 211–428MtCO2eyr−1, suggesting that policy choices made today can strongly affect outcomes over the next two decades. Long-term (2050) emissions were all well above the target set by Executive Order S-3-05 (85MtCO2eyr−1); additional policies or technology development (beyond the study scope) are likely needed to achieve this objective. Cumulative emissions suggest a different outcome, however: due to early emissions reductions, S3 achieves lower cumulative emissions in 2050 than a pathway that linearly reduces emissions between 2020 and 2050 policy targets. Sensitivity analysis provided quantification of individual policy GHG emissions reduction benefits.

Suggested Citation

  • Greenblatt, Jeffery B., 2015. "Modeling California policy impacts on greenhouse gas emissions," Energy Policy, Elsevier, vol. 78(C), pages 158-172.
  • Handle: RePEc:eee:enepol:v:78:y:2015:i:c:p:158-172
    DOI: 10.1016/j.enpol.2014.12.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421514006892
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2014.12.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barth, Matthew & Boriboonsomsin, Kanok, 2008. "Real-World CO2 Impacts of Traffic Congestion," University of California Transportation Center, Working Papers qt4fx9g4gn, University of California Transportation Center.
    2. ., 2014. "Summary of Part II," Chapters, in: Common Innovation, chapter 14, pages 128-130, Edward Elgar Publishing.
    3. Hammerschlag, Roel & Mazza, Patrick, 2005. "Questioning hydrogen," Energy Policy, Elsevier, vol. 33(16), pages 2039-2043, November.
    4. Myles R. Allen & David J. Frame & Chris Huntingford & Chris D. Jones & Jason A. Lowe & Malte Meinshausen & Nicolai Meinshausen, 2009. "Warming caused by cumulative carbon emissions towards the trillionth tonne," Nature, Nature, vol. 458(7242), pages 1163-1166, April.
    5. ., 2014. "Summary and future work," Chapters, in: Exchange Rate Economics, chapter 9, pages 172-183, Edward Elgar Publishing.
    6. Yang, Christopher & Yeh, Sonia & Ramea, Kalai & Zakerinia, Saleh & McCollum, David & Bunch, David & Ogden, Joan, 2014. "Modeling Optimal Transition Pathways to a Low Carbon Economy in California: Appendices and Supplemental Material for California TIMES (CA-TIMES) Model," Institute of Transportation Studies, Working Paper Series qt2gz6g03d, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher M. Jones & Stephen M. Wheeler & Daniel M. Kammen, 2018. "Carbon Footprint Planning: Quantifying Local and State Mitigation Opportunities for 700 California Cities," Urban Planning, Cogitatio Press, vol. 3(2), pages 35-51.
    2. Mastrandrea, Michael D. & Inman, Mason & Cullenward, Danny, 2020. "Assessing California's progress toward its 2020 greenhouse gas emissions limit," Energy Policy, Elsevier, vol. 138(C).
    3. Ülengin, Füsun & Işık, Mine & Ekici, Şule Önsel & Özaydın, Özay & Kabak, Özgür & Topçu, Y. İlker, 2018. "Policy developments for the reduction of climate change impacts by the transportation sector," Transport Policy, Elsevier, vol. 61(C), pages 36-50.
    4. Oh, Yunjung & Park, Junhong & Lee, Jong Tae & Seo, Jigu & Park, Sungwook, 2016. "Development strategies to satisfy corporate average CO2 emission regulations of light duty vehicles (LDVs) in Korea," Energy Policy, Elsevier, vol. 98(C), pages 121-132.
    5. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    6. Stephen M. Wheeler, 2017. "A Carbon-Neutral California: Social Ecology and Prospects for 2050 GHG Reduction," Urban Planning, Cogitatio Press, vol. 2(4), pages 5-18.
    7. Zohrabian, Angineh & Sanders, Kelly T., 2018. "Assessing the impact of drought on the emissions- and water-intensity of California's transitioning power sector," Energy Policy, Elsevier, vol. 123(C), pages 461-470.
    8. Yeh, Sonia & Witcover, Julie & Lade, Gabriel E. & Sperling, Daniel, 2016. "A review of low carbon fuel policies: Principles, program status and future directions," Energy Policy, Elsevier, vol. 97(C), pages 220-234.
    9. Zakerinia, Saleh, 2018. "Understanding the Role of Transportation in Meeting California’s Greenhouse Gas Emissions Reduction Target: A Focus on Technology Forcing Policies, Interactions with the Electric Sector and Mitigation," Institute of Transportation Studies, Working Paper Series qt0r69m651, Institute of Transportation Studies, UC Davis.
    10. Sykes, Maxwell & Axsen, Jonn, 2017. "No free ride to zero-emissions: Simulating a region's need to implement its own zero-emissions vehicle (ZEV) mandate to achieve 2050 GHG targets," Energy Policy, Elsevier, vol. 110(C), pages 447-460.
    11. Bukhary, Saria & Ahmad, Sajjad & Batista, Jacimaria, 2018. "Analyzing land and water requirements for solar deployment in the Southwestern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3288-3305.
    12. Shen, Neng & Deng, Rumeng & Liao, Haolan & Shevchuk, Oleksandr, 2020. "Mapping renewable energy subsidy policy research published from 1997 to 2018: A scientometric review," Utilities Policy, Elsevier, vol. 64(C).
    13. Geoffrey Morrison & Sonia Yeh & Anthony Eggert & Christopher Yang & James Nelson & Jeffery Greenblatt & Raphael Isaac & Mark Jacobson & Josiah Johnston & Daniel Kammen & Ana Mileva & Jack Moore & Davi, 2015. "Comparison of low-carbon pathways for California," Climatic Change, Springer, vol. 131(4), pages 545-557, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hewitt, Mike & Crainic, Teodor Gabriel & Nowak, Maciek & Rei, Walter, 2019. "Scheduled service network design with resource acquisition and management under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 324-343.
    2. Overman, Han & Cummings, Anthony R. & Luzar, Jeffrey B. & Fragoso, Jose M.V., 2019. "National REDD+ outcompetes gold and logging: The potential of cleaning profit chains," World Development, Elsevier, vol. 118(C), pages 16-26.
    3. Fankhauser, Samuel & Hepburn, Cameron, 2010. "Designing carbon markets. Part I: Carbon markets in time," Energy Policy, Elsevier, vol. 38(8), pages 4363-4370, August.
    4. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    5. Kriegler, Elmar, 2011. "Comment," Energy Economics, Elsevier, vol. 33(4), pages 594-596, July.
    6. Kverndokk, Snorre & Figenbaum, Erik & Hovi, Jon, 2020. "Would my driving pattern change if my neighbor were to buy an emission-free car?," Resource and Energy Economics, Elsevier, vol. 60(C).
    7. Dietz, Simon & Gollier, Christian & Kessler, Louise, 2018. "The climate beta," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 258-274.
    8. van der Ploeg, Frederick & Rezai, Armon, 2017. "Cumulative emissions, unburnable fossil fuel, and the optimal carbon tax," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 216-222.
    9. Hermann Held, 2019. "Cost Risk Analysis: Dynamically Consistent Decision-Making under Climate Targets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 247-261, January.
    10. Valero, Antonio & Agudelo, Andrés & Valero, Alicia, 2011. "The crepuscular planet. A model for the exhausted atmosphere and hydrosphere," Energy, Elsevier, vol. 36(6), pages 3745-3753.
    11. Hoel, Michael, 2016. "Optimal control theory with applications to resource and environmental economics," Memorandum 08/2016, Oslo University, Department of Economics.
    12. Malik Curuk & Suphi Sen, 2023. "Climate Policy and Resource Extraction with Variable Markups and Imperfect Substitutes," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(4), pages 1091-1120.
    13. Wietschel, Martin & Hasenauer, Ulrike, 2007. "Feasibility of hydrogen corridors between the EU and its neighbouring countries," Renewable Energy, Elsevier, vol. 32(13), pages 2129-2146.
    14. Gustav Engström & Johan Gars, 2016. "Climatic Tipping Points and Optimal Fossil-Fuel Use," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 541-571, November.
    15. Richard Millar & Alexander Otto & Piers Forster & Jason Lowe & William Ingram & Myles Allen, 2015. "Model structure in observational constraints on transient climate response," Climatic Change, Springer, vol. 131(2), pages 199-211, July.
    16. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    17. Linnenluecke, Martina K. & Smith, Tom & McKnight, Brent, 2016. "Environmental finance: A research agenda for interdisciplinary finance research," Economic Modelling, Elsevier, vol. 59(C), pages 124-130.
    18. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    19. Rick Van der Ploeg & Armon Rezai, 2015. "Intergenerational Inequality Aversion, Growth and the Role of Damages: Occam's rule for the global tax," Economics Series Working Papers OxCarre Research Paper 15, University of Oxford, Department of Economics.
    20. Adam Michael Bauer & Cristian Proistosescu & Gernot Wagner, 2023. "Carbon Dioxide as a Risky Asset," CESifo Working Paper Series 10278, CESifo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:78:y:2015:i:c:p:158-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.