IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v70y2018icp563-581.html
   My bibliography  Save this article

Stochastic convergence in per capita CO2 emissions. An approach from nonlinear stationarity analysis

Author

Listed:
  • Presno, María José
  • Landajo, Manuel
  • Fernández González, Paula

Abstract

This paper studies stochastic convergence of per capita CO2 emissions in 28 OECD countries for the 1901–2009 period. The analysis is carried out at two aggregation levels: first for the whole set of countries (joint analysis) and then separately for developed and developing states (group analysis). A powerful time series methodology - adapted to a nonlinear framework that allows for quadratic trends with possibly smooth transition between regimes - is applied. This approach provides more robust conclusions in convergence path analysis, enabling (a) robust detection of the presence, and if so, the number of changes in the level and/or slope of the trend of the series; (b) inferences on stationarity of relative per capita CO2 emissions, conditionally on the presence of breaks and smooth transitions between regimes; and (c) estimation of change locations in the convergence paths. Finally, as stochastic convergence is attained when both stationarity around a trend and β-convergence simultaneously hold, the linear approach proposed by Tomljanovich and Vogelsang (2002) is extended in order to allow for more general, quadratic models. Overall, joint analysis finds some evidence of stochastic convergence in per capita CO2 emissions. Some dispersion in terms of β-convergence is detected by the group analysis, particularly among developed countries. This is in accordance with per capita GDP not being the sole determinant of convergence in emissions, with factors like search for more efficient technologies, fossil fuel substitution, innovation, and possibly industry outsourcing, also having a crucial role.

Suggested Citation

  • Presno, María José & Landajo, Manuel & Fernández González, Paula, 2018. "Stochastic convergence in per capita CO2 emissions. An approach from nonlinear stationarity analysis," Energy Economics, Elsevier, vol. 70(C), pages 563-581.
  • Handle: RePEc:eee:eneeco:v:70:y:2018:i:c:p:563-581
    DOI: 10.1016/j.eneco.2015.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988315002753
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2015.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schymura, Michael & Voigt, Sebastian, 2014. "What drives changes in carbon emissions? An index decomposition approach for 40 countries," ZEW Discussion Papers 14-038, ZEW - Leibniz Centre for European Economic Research.
    2. Timothy J. Vogelsang & Marc Tomljanovich, 2002. "Are U.S. regions converging? Using new econometric methods to examine old issues," Empirical Economics, Springer, vol. 27(1), pages 49-62.
    3. Mohitosh Kejriwal & Pierre Perron, 2010. "A sequential procedure to determine the number of breaks in trend with an integrated or stationary noise component," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 305-328, September.
    4. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    5. Manuel Landajo & María José Presno, 2010. "Stationarity testing under nonlinear models. Some asymptotic results," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 392-405, September.
    6. Markku Lanne and Matti Liski, 2004. "Trends and Breaks in Per-Capita Carbon Dioxide Emissions, 1870-2028," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 41-66.
    7. Alison Stegman, 2005. "Convergence In Carbon Emissions Per Capita," CAMA Working Papers 2005-08, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    8. Mark Strazicich & John List, 2003. "Are CO 2 Emission Levels Converging Among Industrial Countries?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(3), pages 263-271, March.
    9. Warwick J. McKibbin & Alison Stegman, 2005. "Convergence And Per Capita Carbon Emissions," CAMA Working Papers 2005-10, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    10. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    11. Joakim Westerlund & Syed Basher, 2008. "Testing for Convergence in Carbon Dioxide Emissions Using a Century of Panel Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 40(1), pages 109-120, May.
    12. Mohitosh Kejriwal & Claude Lopez, 2013. "Unit Roots, Level Shifts, and Trend Breaks in Per Capita Output: A Robust Evaluation," Econometric Reviews, Taylor & Francis Journals, vol. 32(8), pages 892-927, November.
    13. Josep Carrion-i-Silvestre & Vicente German-Soto, 2009. "Panel data stochastic convergence analysis of the Mexican regions," Empirical Economics, Springer, vol. 37(2), pages 303-327, October.
    14. Presno, María José & Landajo, Manuel & Fernández, Paula, 2014. "Non-renewable resource prices: A robust evaluation from the stationarity perspective," Resource and Energy Economics, Elsevier, vol. 36(2), pages 394-416.
    15. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2010. "Robust methods for detecting multiple level breaks in autocorrelated time series," Journal of Econometrics, Elsevier, vol. 157(2), pages 342-358, August.
    16. Joseph Aldy, 2006. "Per Capita Carbon Dioxide Emissions: Convergence or Divergence?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 33(4), pages 533-555, April.
    17. Carlino, Gerald A. & Mills, Leonard O., 1993. "Are U.S. regional incomes converging? : A time series analysis," Journal of Monetary Economics, Elsevier, vol. 32(2), pages 335-346, November.
    18. Lee, Chien-Chiang & Chang, Chun-Ping, 2008. "New evidence on the convergence of per capita carbon dioxide emissions from panel seemingly unrelated regressions augmented Dickey–Fuller tests," Energy, Elsevier, vol. 33(9), pages 1468-1475.
    19. Lee, Chien-Chiang & Chang, Chun-Ping, 2009. "Stochastic convergence of per capita carbon dioxide emissions and multiple structural breaks in OECD countries," Economic Modelling, Elsevier, vol. 26(6), pages 1375-1381, November.
    20. Joseph E. Aldy, 2007. "Divergence in State-Level Per Capita Carbon Dioxide Emissions," Land Economics, University of Wisconsin Press, vol. 83(3), pages 353-369.
    21. Nilgun Yavuz & Veli Yilanci, 2013. "Convergence in Per Capita Carbon Dioxide Emissions Among G7 Countries: A TAR Panel Unit Root Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(2), pages 283-291, February.
    22. Perron, Pierre & Yabu, Tomoyoshi, 2009. "Testing for Shifts in Trend With an Integrated or Stationary Noise Component," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 369-396.
    23. Ben-David, Dan & Papell, David H., 1995. "The great wars, the great crash, and steady state growth: Some new evidence about an old stylized fact," Journal of Monetary Economics, Elsevier, vol. 36(3), pages 453-475, December.
    24. Li, Qing & Papell, David, 1999. "Convergence of international output Time series evidence for 16 OECD countries," International Review of Economics & Finance, Elsevier, vol. 8(3), pages 267-280, September.
    25. Mariam Camarero & Yurena Mendoza & Javier Ordóñez, 2011. "Re-examining CO2 emissions. Is the assessment of convergence meaningless?," Working Papers 2011/06, Economics Department, Universitat Jaume I, Castellón (Spain).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mar'ia Jos'e Presno & Manuel Landajo & Paula Fern'andez Gonz'alez, 2024. "Stochastic convergence in per capita CO$_2$ emissions. An approach from nonlinear stationarity analysis," Papers 2402.00567, arXiv.org.
    2. Mariam Camarero & Yurena Mendoza & Javier Ordóñez, 2011. "Re-examining CO2 emissions. Is the assessment of convergence meaningless?," Working Papers 2011/06, Economics Department, Universitat Jaume I, Castellón (Spain).
    3. Ahmed, Mumtaz & Khan, Atif Maqbool & Bibi, Salma & Zakaria, Muhammad, 2017. "Convergence of per capita CO2 emissions across the globe: Insights via wavelet analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 86-97.
    4. Jianhuan Huang & Yantuan Yu & Chunbo Ma, 2018. "Energy Efficiency Convergence in China: Catch-Up, Lock-In and Regulatory Uniformity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(1), pages 107-130, May.
    5. Diego Romero-Ávila & Tolga Omay, 2023. "Convergence of GHGs emissions in the long-run: aerosol precursors, reactive gases and aerosols—a nonlinear panel approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12303-12337, November.
    6. Mar'ia Jos'e Presno & Manuel Landajo & Paula Fern'andez Gonz'alez, 2024. "GHG emissions in the EU-28. A multilevel club convergence study of the Emission Trading System and Effort Sharing Decision mechanisms," Papers 2402.01784, arXiv.org, revised Feb 2024.
    7. Nilgun Yavuz & Veli Yilanci, 2013. "Convergence in Per Capita Carbon Dioxide Emissions Among G7 Countries: A TAR Panel Unit Root Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(2), pages 283-291, February.
    8. Octavio Fernández-Amador & Doris A. Oberdabernig & Patrick Tomberger, 2019. "Testing for Convergence in Carbon Dioxide Emissions Using a Bayesian Robust Structural Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1265-1286, August.
    9. Cuihong Ye & Yiguo Chen & Roula Inglesi-Lotz & Tsangyao Chang, 2020. "CO2 emissions converge in China and G7 countries? Further evidence from Fourier quantile unit root test," Energy & Environment, , vol. 31(2), pages 348-363, March.
    10. Firouz Fallahi, 2020. "Persistence and unit root in $$\text {CO}_{2}$$CO2 emissions: evidence from disaggregated global and regional data," Empirical Economics, Springer, vol. 58(5), pages 2155-2179, May.
    11. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris, 2020. "Stochastic convergence in per capita CO2 emissions: Evidence from emerging economies, 1921–2014," Energy Economics, Elsevier, vol. 86(C).
    12. Belloc, Ignacio & Molina, José Alberto, 2023. "Are greenhouse gas emissions converging in Latin America? Implications for environmental policies," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 337-356.
    13. Apergis, Nicholas & Payne, James E., 2017. "Per capita carbon dioxide emissions across U.S. states by sector and fossil fuel source: Evidence from club convergence tests," Energy Economics, Elsevier, vol. 63(C), pages 365-372.
    14. Edy Yusuf Agung Gunanto & Tri Wahyu & Jaka Aminata & Banatul Hayati, 2021. "Convergence CO2 Emission in ASEAN Countries: Augmented Green Solow Model Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 572-578.
    15. Yu-Chen Zhang & Deng-Kui Si & Bing Zhao, 2020. "The Convergence of Sulphur Dioxide (SO 2 ) Emissions Per Capita in China," Sustainability, MDPI, vol. 12(5), pages 1-33, February.
    16. Herrerias, M.J., 2013. "The environmental convergence hypothesis: Carbon dioxide emissions according to the source of energy," Energy Policy, Elsevier, vol. 61(C), pages 1140-1150.
    17. Tiwari, Aviral & Nasir, Muhammad Ali & shahbaz, Muhammad & Raheem, Ibrahim, 2020. "Convergence and club convergence of CO2 emissions at state levels: A nonlinear analysis of the USA," MPRA Paper 105355, University Library of Munich, Germany.
    18. Marco R. Barassi & Nicola Spagnolo & Yuqian Zhao, 2018. "Fractional Integration Versus Structural Change: Testing the Convergence of $$\hbox {CO}_{2}$$ CO 2 Emissions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(4), pages 923-968, December.
    19. Zerbo, Eléazar & Darné, Olivier, 2019. "On the stationarity of CO2 emissions in OECD and BRICS countries: A sequential testing approach," Energy Economics, Elsevier, vol. 83(C), pages 319-332.
    20. McKitrick, Ross & Wood, Joel, 2013. "Co-fluctuation patterns of per capita carbon dioxide emissions: The role of energy markets," Energy Economics, Elsevier, vol. 39(C), pages 1-12.

    More about this item

    Keywords

    Stationarity testing; Quadratic trends; Structural change; Smooth transition; Stochastic convergence; β-convergence; Per capita CO2 emissions;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:70:y:2018:i:c:p:563-581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.