IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v240y2019icp499-512.html
   My bibliography  Save this article

Effects of monetary investment, payback time and firm characteristics on electricity saving in energy-intensive industry

Author

Listed:
  • Lawrence, Akvile
  • Karlsson, Magnus
  • Nehler, Therese
  • Thollander, Patrik

Abstract

Our study looked at the extent to which firm characteristics such as total firm capital affect electricity saving in energy-intensive industry in Sweden from 2007 to 2015. Specifically, the most influential variables for systematic variation in electricity saving in the energy-intensive companies participating in Sweden’s voluntary programme for improving energy efficiency in energy-intensive industry (the PFE) were studied by analysing monetary investment, payback time and firm characteristics. Monetary investment and payback time influenced electricity savings during the PFE more than firm characteristics, with monetary investment being most influential. Nevertheless, the total systematic variation in firm characteristics may account for ∼16% of the systematic variation in electricity saving, where ∼74% (32 of 43) of the studied firm characteristics seemed to merit further investigation and where ∼49% (21 of 43) of firm characteristics appeared most influential. The most influential firm characteristics were total firm capital, stock turnover ratio, machinery, short-term liabilities per turnover ratio and goodwill. The overall results showed that firm characteristics can influence a firm’s energy-saving activities and indicated a tendency for more energy savings in companies that were financially weaker or had done less work to improve energy efficiency prior to the PFE.

Suggested Citation

  • Lawrence, Akvile & Karlsson, Magnus & Nehler, Therese & Thollander, Patrik, 2019. "Effects of monetary investment, payback time and firm characteristics on electricity saving in energy-intensive industry," Applied Energy, Elsevier, vol. 240(C), pages 499-512.
  • Handle: RePEc:eee:appene:v:240:y:2019:i:c:p:499-512
    DOI: 10.1016/j.apenergy.2019.02.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919303575
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.02.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Yuan, 2007. "Implementation of voluntary agreements for energy efficiency in China," Energy Policy, Elsevier, vol. 35(11), pages 5541-5548, November.
    2. Paolo Angelini & Andrea Generale, 2008. "On the Evolution of Firm Size Distributions," American Economic Review, American Economic Association, vol. 98(1), pages 426-438, March.
    3. Lei Ru & Wei Si, 2015. "Total-factor energy efficiency in China’s sugar manufacturing industry," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 7(3), pages 360-373, September.
    4. de Groot, Henri L. F. & Verhoef, Erik T. & Nijkamp, Peter, 2001. "Energy saving by firms: decision-making, barriers and policies," Energy Economics, Elsevier, vol. 23(6), pages 717-740, November.
    5. Sun, Li, 2016. "Managerial ability and goodwill impairment," Advances in accounting, Elsevier, vol. 32(C), pages 42-51.
    6. Mingshun Zhang & Huanhuan Li & Wei Jin & Erik ter Avest & Meine Pieter van Dijk, 2018. "Voluntary agreements to achieve energy efficiency, a comparison between China and The Netherlands," Energy & Environment, , vol. 29(6), pages 989-1003, September.
    7. Costa-Campi, M.T. & Duch-Brown, N. & García-Quevedo, J., 2014. "R&D drivers and obstacles to innovation in the energy industry," Energy Economics, Elsevier, vol. 46(C), pages 20-30.
    8. Linden, Anna-Lisa & Carlsson-Kanyama, Annika, 2002. "Voluntary agreements--a measure for energy-efficiency in industry? Lessons from a Swedish programme," Energy Policy, Elsevier, vol. 30(10), pages 897-905, August.
    9. Rezessy, Silvia & Bertoldi, Paolo, 2011. "Voluntary agreements in the field of energy efficiency and emission reduction: Review and analysis of experiences in the European Union," Energy Policy, Elsevier, vol. 39(11), pages 7121-7129.
    10. Haller, Stefanie A. & Hyland, Marie, 2014. "Capital–energy substitution: Evidence from a panel of Irish manufacturing firms," Energy Economics, Elsevier, vol. 45(C), pages 501-510.
    11. Oikonomou, V. & Patel, M.K. & van der Gaast, W. & Rietbergen, M., 2009. "Voluntary agreements with white certificates for energy efficiency improvement as a hybrid policy instrument," Energy Policy, Elsevier, vol. 37(5), pages 1970-1982, May.
    12. Akvile Lawrence & Patrik Thollander & Magnus Karlsson, 2018. "Drivers, Barriers, and Success Factors for Improving Energy Management in the Pulp and Paper Industry," Sustainability, MDPI, vol. 10(6), pages 1-35, June.
    13. Geroski, P. A., 2000. "Models of technology diffusion," Research Policy, Elsevier, vol. 29(4-5), pages 603-625, April.
    14. Kounetas, Kostas & Tsekouras, Kostas, 2008. "The energy efficiency paradox revisited through a partial observability approach," Energy Economics, Elsevier, vol. 30(5), pages 2517-2536, September.
    15. Robert G. Eccles & Ioannis Ioannou & George Serafeim, 2012. "The Impact of Corporate Sustainability on Organizational Processes and Performance," NBER Working Papers 17950, National Bureau of Economic Research, Inc.
    16. Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
    17. Chen, Q. & Hammond, G.P. & Norman, J.B., 2016. "Energy efficiency potentials: Contrasting thermodynamic, technical and economic limits for organic Rankine cycles within UK industry," Applied Energy, Elsevier, vol. 164(C), pages 984-990.
    18. Thollander, Patrik & Danestig, Maria & Rohdin, Patrik, 2007. "Energy policies for increased industrial energy efficiency: Evaluation of a local energy programme for manufacturing SMEs," Energy Policy, Elsevier, vol. 35(11), pages 5774-5783, November.
    19. Worrell, Ernst & Laitner, John A & Ruth, Michael & Finman, Hodayah, 2003. "Productivity benefits of industrial energy efficiency measures," Energy, Elsevier, vol. 28(11), pages 1081-1098.
    20. Yawson, Alfred, 2009. "Interaction effects of restructuring decisions on operating profit following performance shocks," Journal of Economics and Business, Elsevier, vol. 61(3), pages 216-237.
    21. Young-Soon Hwang & Hong-Ghi Min & Seung-Hun Han, 2010. "The Influence of Financial Development on R&D Activity: Cross-Country Evidence," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 13(03), pages 381-401.
    22. Costa-Campi, María Teresa & García-Quevedo, José & Segarra, Agustí, 2015. "Energy efficiency determinants: An empirical analysis of Spanish innovative firms," Energy Policy, Elsevier, vol. 83(C), pages 229-239.
    23. Belderbos, Rene & Carree, Martin & Diederen, Bert & Lokshin, Boris & Veugelers, Reinhilde, 2004. "Heterogeneity in R&D cooperation strategies," International Journal of Industrial Organization, Elsevier, vol. 22(8-9), pages 1237-1263, November.
    24. Worrell, Ernst & Biermans, Gijs, 2005. "Move over! Stock turnover, retrofit and industrial energy efficiency," Energy Policy, Elsevier, vol. 33(7), pages 949-962, May.
    25. Lawrence, Akvile & Karlsson, Magnus & Thollander, Patrik, 2018. "Effects of firm characteristics and energy management for improving energy efficiency in the pulp and paper industry," Energy, Elsevier, vol. 153(C), pages 825-835.
    26. Jones, Christopher S. & Tuzel, Selale, 2013. "Inventory investment and the cost of capital," Journal of Financial Economics, Elsevier, vol. 107(3), pages 557-579.
    27. Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.
    28. Mohammad Tahir & Melati Anuar, 2016. "The determinants of working capital management and firms performance of textile sector in pakistan," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(2), pages 605-618, March.
    29. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    30. Abeelen, Christiaan & Harmsen, Robert & Worrell, Ernst, 2013. "Implementation of energy efficiency projects by Dutch industry," Energy Policy, Elsevier, vol. 63(C), pages 408-418.
    31. Plank, Josef & Doblinger, Claudia, 2018. "The firm-level innovation impact of public R&D funding: Evidence from the German renewable energy sector," Energy Policy, Elsevier, vol. 113(C), pages 430-438.
    32. Pizer, William & Kopp, Raymond & Morgenstern, Richard & Harrington, Winston & Shih, Jhih-Shyang, 2002. "Technology Adoption and Aggregate Energy Efficiency," RFF Working Paper Series dp-02-52, Resources for the Future.
    33. Cagno, Enrico & Ramirez-Portilla, Andres & Trianni, Andrea, 2015. "Linking energy efficiency and innovation practices: Empirical evidence from the foundry sector," Energy Policy, Elsevier, vol. 83(C), pages 240-256.
    34. Marco Giuliani & Daniel Brännström, 2011. "Defining goodwill: a practice perspective," Journal of Financial Reporting and Accounting, Emerald Group Publishing Limited, vol. 9(2), pages 161-175, October.
    35. Kettaneh, Nouna & Berglund, Anders & Wold, Svante, 2005. "PCA and PLS with very large data sets," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 69-85, January.
    36. Sangalli, Ilaria, 2013. "Inventory investment and financial constraints in the Italian manufacturing industry: A panel data GMM approach," Research in Economics, Elsevier, vol. 67(2), pages 157-178.
    37. Song, ChiUng & Oh, Wankeun, 2015. "Determinants of innovation in energy intensive industry and implications for energy policy," Energy Policy, Elsevier, vol. 81(C), pages 122-130.
    38. Dong, Manh Cuong & Tian, Shaonan & Chen, Cathy W.S., 2018. "Predicting failure risk using financial ratios: Quantile hazard model approach," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 204-220.
    39. Paramonova, Svetlana & Thollander, Patrik & Ottosson, Mikael, 2015. "Quantifying the extended energy efficiency gap-evidence from Swedish electricity-intensive industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 472-483.
    40. Siitonen, Sari & Tuomaala, Mari & Ahtila, Pekka, 2010. "Variables affecting energy efficiency and CO2 emissions in the steel industry," Energy Policy, Elsevier, vol. 38(5), pages 2477-2485, May.
    41. Rohdin, P. & Thollander, P., 2006. "Barriers to and driving forces for energy efficiency in the non-energy intensive manufacturing industry in Sweden," Energy, Elsevier, vol. 31(12), pages 1836-1844.
    42. Rohdin, Patrik & Thollander, Patrik & Solding, Petter, 2007. "Barriers to and drivers for energy efficiency in the Swedish foundry industry," Energy Policy, Elsevier, vol. 35(1), pages 672-677, January.
    43. Kai Quan Zhang & Hsing Hung Chen, 2017. "Environmental Performance and Financing Decisions Impact on Sustainable Financial Development of Chinese Environmental Protection Enterprises," Sustainability, MDPI, vol. 9(12), pages 1-14, December.
    44. Hammar, Henrik & Löfgren, Åsa, 2010. "Explaining adoption of end of pipe solutions and clean technologies--Determinants of firms' investments for reducing emissions to air in four sectors in Sweden," Energy Policy, Elsevier, vol. 38(7), pages 3644-3651, July.
    45. Daan van Soest & Erwin Bulte, 2001. "Does the Energy-Efficiency Paradox Exist? Technological Progress and Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 18(1), pages 101-112, January.
    46. Locorotondo, Rosy & Dewaelheyns, Nico & Van Hulle, Cynthia, 2014. "Cash holdings and business group membership," Journal of Business Research, Elsevier, vol. 67(3), pages 316-323.
    47. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    48. Eichhorst, Urda & Bongardt, Daniel, 2009. "Towards cooperative policy approaches in China--Drivers for voluntary agreements on industrial energy efficiency in Nanjing," Energy Policy, Elsevier, vol. 37(5), pages 1855-1865, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Tiansen & Song, Yazhi & Xing, Xinpeng & Zhu, Yue & Qu, Zhengyu, 2021. "Bridging production factors allocation and environmental performance of China’s heavy-polluting energy firms: The moderation effect of financing and internationalization," Energy, Elsevier, vol. 222(C).
    2. Luo, Shihua & Hu, Weihao & Liu, Wen & Xu, Xiao & Huang, Qi & Chen, Zhe & Lund, Henrik, 2021. "Transition pathways towards a deep decarbonization energy system—A case study in Sichuan, China," Applied Energy, Elsevier, vol. 302(C).
    3. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2020. "A review of optimal energy policy instruments on industrial energy efficiency programs, rebound effects, and government policies," Energy Policy, Elsevier, vol. 139(C).
    4. Zhang, Yixiang & Zhou, Weiyi & Liu, Meiling, 2022. "Driving factors of enterprise energy-saving and emission reduction behaviors," Energy, Elsevier, vol. 256(C).
    5. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    6. Safarzadeh, Soroush & Hafezalkotob, Ashkan & Jafari, Hamed, 2022. "Energy supply chain empowerment through tradable green and white certificates: A pathway to sustainable energy generation," Applied Energy, Elsevier, vol. 323(C).
    7. Delorit, Justin D. & Schuldt, Steven J. & Chini, Christopher M., 2020. "Evaluating an adaptive management strategy for organizational energy use under climate uncertainty," Energy Policy, Elsevier, vol. 142(C).
    8. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lawrence, Akvile & Karlsson, Magnus & Thollander, Patrik, 2018. "Effects of firm characteristics and energy management for improving energy efficiency in the pulp and paper industry," Energy, Elsevier, vol. 153(C), pages 825-835.
    2. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.
    3. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    4. Solnørdal, Mette Talseth & Thyholdt, Sverre Braathen, 2019. "Absorptive capacity and energy efficiency in manufacturing firms – An empirical analysis in Norway," Energy Policy, Elsevier, vol. 132(C), pages 978-990.
    5. Fleiter, Tobias & Hirzel, Simon & Worrell, Ernst, 2012. "The characteristics of energy-efficiency measures – a neglected dimension," Energy Policy, Elsevier, vol. 51(C), pages 502-513.
    6. Olsthoorn, Mark & Schleich, Joachim & Hirzel, Simon, 2017. "Adoption of Energy Efficiency Measures for Non-residential Buildings: Technological and Organizational Heterogeneity in the Trade, Commerce and Services Sector," Ecological Economics, Elsevier, vol. 136(C), pages 240-254.
    7. Fleiter, Tobias & Worrell, Ernst & Eichhammer, Wolfgang, 2011. "Barriers to energy efficiency in industrial bottom-up energy demand models--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3099-3111, August.
    8. Hasan, A S M Monjurul & Tuhin, Rashedul Amin & Ullah, Mahfuz & Sakib, Taiyeb Hasan & Thollander, Patrik & Trianni, Andrea, 2021. "A comprehensive investigation of energy management practices within energy intensive industries in Bangladesh," Energy, Elsevier, vol. 232(C).
    9. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    10. Monjurul Hasan, A S M & Trianni, Andrea & Shukla, Nagesh & Katic, Mile, 2022. "A novel characterization based framework to incorporate industrial energy management services," Applied Energy, Elsevier, vol. 313(C).
    11. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    12. Marlene Preiß, 2021. "Treiber und Hemmnisse betrieblicher Effizienzmaßnahmen – Vernetzung als Erfolgsfaktor [Drivers and barriers of operational efficiency measures—networking as a success factor]," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 29(2), pages 93-106, June.
    13. Noor Jalo & Ida Johansson & Mariana Andrei & Therese Nehler & Patrik Thollander, 2021. "Barriers to and Drivers of Energy Management in Swedish SMEs," Energies, MDPI, vol. 14(21), pages 1-21, October.
    14. Trianni, Andrea & Cagno, Enrico & Worrell, Ernst, 2013. "Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs," Energy Policy, Elsevier, vol. 61(C), pages 430-440.
    15. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    16. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2020. "A review of optimal energy policy instruments on industrial energy efficiency programs, rebound effects, and government policies," Energy Policy, Elsevier, vol. 139(C).
    17. Akvile Lawrence & Patrik Thollander & Mariana Andrei & Magnus Karlsson, 2019. "Specific Energy Consumption/Use (SEC) in Energy Management for Improving Energy Efficiency in Industry: Meaning, Usage and Differences," Energies, MDPI, vol. 12(2), pages 1-22, January.
    18. Kalantzis, Fotios & Revoltella, Debora, 2019. "How energy audits promote SMEs' energy efficiency investment," EIB Working Papers 2019/02, European Investment Bank (EIB).
    19. Zhu, Junming & Chertow, Marian R., 2017. "Business Strategy Under Institutional Constraints: Evidence From China's Energy Efficiency Regulations," Ecological Economics, Elsevier, vol. 135(C), pages 10-21.
    20. Kounetas, Konstantinos & Mourtos, Ioannis & Tsekouras, Konstantinos, 2012. "Is energy intensity important for the productivity growth of EET adopters?," Energy Economics, Elsevier, vol. 34(4), pages 930-941.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:240:y:2019:i:c:p:499-512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.