IDEAS home Printed from https://ideas.repec.org/a/bla/rdevec/v26y2022i3p1798-1849.html
   My bibliography  Save this article

Dynamic correlation between crude oil and agricultural futures markets

Author

Listed:
  • Zhuo Chen
  • Bo Yan
  • Hanwen Kang

Abstract

In recent years, the relationship between agricultural commodities and crude oil has become increasingly close with the promotion of biofuel policies. This study examines the dynamic correlation between global crude oil futures and seven agricultural commodity futures by applying the consistent dynamic conditional correlation and dynamic equicorrelation models. The empirical results show that the dynamic correlation between the global crude oil futures market and China's agricultural futures market is weak compared to the global agricultural futures market. In particular, soybean oil has the strongest correlation with crude oil, while Dalian Commodity Exchange (DCE) corn and Zhengzhou Commodity Exchange wheat have the weakest correlation with crude oil. There is an indirect linkage between crude oil futures and DCE soybean meal and DCE soybean oil. Moreover, the dynamic correlation between crude oil and agricultural commodities increased during the financial crisis, the novel coronavirus (COVID‐19) epidemic, and the crude oil crash crisis. Brent crude oil has a stronger co‐movement with China's agricultural commodities than West Texas Intermediate crude oil and can better hedge the risk of agricultural commodities. The findings of this study provide some insights into the contagion risk management of crude oil futures and agricultural futures markets.

Suggested Citation

  • Zhuo Chen & Bo Yan & Hanwen Kang, 2022. "Dynamic correlation between crude oil and agricultural futures markets," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1798-1849, August.
  • Handle: RePEc:bla:rdevec:v:26:y:2022:i:3:p:1798-1849
    DOI: 10.1111/rode.12885
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rode.12885
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rode.12885?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Serletis, Apostolos & Xu, Libo, 2019. "The ethanol mandate and crude oil and biofuel agricultural commodity price dynamics," Journal of Commodity Markets, Elsevier, vol. 15(C), pages 1-1.
    2. Liu, Xiang-dong & Pan, Fei & Yuan, Lin & Chen, Yu-wang, 2019. "The dependence structure between crude oil futures prices and Chinese agricultural commodity futures prices: Measurement based on Markov-switching GRG copula," Energy, Elsevier, vol. 182(C), pages 999-1012.
    3. Dahl, Roy Endré & Oglend, Atle & Yahya, Muhammad, 2020. "Dynamics of volatility spillover in commodity markets: Linking crude oil to agriculture," Journal of Commodity Markets, Elsevier, vol. 20(C).
    4. Vo, Long Hai & Le, Thai-Ha, 2021. "Eatery, energy, environment and economic system, 1970–2017: Understanding volatility spillover patterns in a global sample," Energy Economics, Elsevier, vol. 100(C).
    5. David Zilberman & Gal Hochman & Deepak Rajagopal & Steve Sexton & Govinda Timilsina, 2013. "The Impact of Biofuels on Commodity Food Prices: Assessment of Findings," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 275-281.
    6. Albulescu, Claudiu Tiberiu & Tiwari, Aviral Kumar & Ji, Qiang, 2020. "Copula-based local dependence among energy, agriculture and metal commodities markets," Energy, Elsevier, vol. 202(C).
    7. Kenourgios, Dimitris, 2014. "On financial contagion and implied market volatility," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 21-30.
    8. Satish Kumar & Aviral Kumar Tiwari & I. D. Raheem & Qiang Ji, 2020. "Dependence risk analysis in energy, agricultural and precious metals commodities: a pair vine copula approach," Applied Economics, Taylor & Francis Journals, vol. 52(28), pages 3055-3072, June.
    9. Tiwari, Aviral Kumar & Boachie, Micheal Kofi & Suleman, Muhammed Tahir & Gupta, Rangan, 2021. "Structure dependence between oil and agricultural commodities returns: The role of geopolitical risks," Energy, Elsevier, vol. 219(C).
    10. Yahya, Muhammad & Oglend, Atle & Dahl, Roy Endré, 2019. "Temporal and spectral dependence between crude oil and agricultural commodities: A wavelet-based copula approach," Energy Economics, Elsevier, vol. 80(C), pages 277-296.
    11. Kroner, Kenneth F & Ng, Victor K, 1998. "Modeling Asymmetric Comovements of Asset Returns," Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 817-844.
    12. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    13. Jian Yang & R. Brian Balyeat & David J. Leatham, 2005. "Futures Trading Activity and Commodity Cash Price Volatility," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 32(1‐2), pages 297-323, January.
    14. Curtis McKnight & Feng Qiu & Marty Luckert & Grant Hauer, 2021. "Prices for a second‐generation biofuel industry in Canada: Market linkages between Canadian wheat and US energy and agricultural commodities," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 69(3), pages 337-351, September.
    15. Binqing Xiao & Honghai Yu & Libing Fang & Sifang Ding, 2020. "Estimating the connectedness of commodity futures using a network approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(4), pages 598-616, April.
    16. Fernandez-Perez, Adrian & Frijns, Bart & Tourani-Rad, Alireza, 2016. "Contemporaneous interactions among fuel, biofuel and agricultural commodities," Energy Economics, Elsevier, vol. 58(C), pages 1-10.
    17. Franken, Jason R.V. & Irwin, Scott H. & Garcia, Philip, 2021. "Biodiesel hedging under binding renewable fuel standard mandates," Energy Economics, Elsevier, vol. 96(C).
    18. Monika Roman & Aleksandra Górecka & Joanna Domagała, 2020. "The Linkages between Crude Oil and Food Prices," Energies, MDPI, vol. 13(24), pages 1-18, December.
    19. Pan, Zhiyuan & Wang, Yudong & Liu, Li, 2016. "The relationships between petroleum and stock returns: An asymmetric dynamic equi-correlation approach," Energy Economics, Elsevier, vol. 56(C), pages 453-463.
    20. Dalheimer, Bernhard & Herwartz, Helmut & Lange, Alexander, 2021. "The threat of oil market turmoils to food price stability in Sub-Saharan Africa," Energy Economics, Elsevier, vol. 93(C).
    21. Zaghum Umar & Mariya Gubareva & Muhammad Naeem & Ayesha Akhter, 2021. "Return and volatility transmission between oil price shocks and agricultural commodities," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-18, February.
    22. Nicola, Francesca de & De Pace, Pierangelo & Hernandez, Manuel A., 2016. "Co-movement of major energy, agricultural, and food commodity price returns: A time-series assessment," Energy Economics, Elsevier, vol. 57(C), pages 28-41.
    23. Hau, Liya & Zhu, Huiming & Huang, Rui & Ma, Xiang, 2020. "Heterogeneous dependence between crude oil price volatility and China’s agriculture commodity futures: Evidence from quantile-on-quantile regression," Energy, Elsevier, vol. 213(C).
    24. Jaimes, Richard & Gerlagh, Reyer, 2020. "Resource-richness and economic growth in contemporary U.S," Energy Economics, Elsevier, vol. 89(C).
    25. Shahzad, Farrukh & Bouri, Elie & Mokni, Khaled & Ajmi, Ahdi Noomen, 2021. "Energy, agriculture, and precious metals: Evidence from time-varying Granger causal relationships for both return and volatility," Resources Policy, Elsevier, vol. 74(C).
    26. Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2016. "Ethanol and field crops: Is there a price connection?," Food Policy, Elsevier, vol. 63(C), pages 53-61.
    27. Leong, Soon Heng, 2021. "Global crude oil and the Chinese oil-intensive sectors: A comprehensive causality study," Energy Economics, Elsevier, vol. 103(C).
    28. Shahzad, Syed Jawad Hussain & Hernandez, Jose Arreola & Al-Yahyaee, Khamis Hamed & Jammazi, Rania, 2018. "Asymmetric risk spillovers between oil and agricultural commodities," Energy Policy, Elsevier, vol. 118(C), pages 182-198.
    29. Tiwari, Aviral Kumar & Nasreen, Samia & Shahbaz, Muhammad & Hammoudeh, Shawkat, 2020. "Time-frequency causality and connectedness between international prices of energy, food, industry, agriculture and metals," Energy Economics, Elsevier, vol. 85(C).
    30. Mensi, Walid & Hammoudeh, Shawkat & Al-Jarrah, Idries Mohammad Wanas & Al-Yahyaee, Khamis Hamed & Kang, Sang Hoon, 2019. "Risk spillovers and hedging effectiveness between major commodities, and Islamic and conventional GCC banks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 60(C), pages 68-88.
    31. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    32. Duc Huynh, Toan Luu & Burggraf, Tobias & Nasir, Muhammad Ali, 2020. "Financialisation of natural resources & instability caused by risk transfer in commodity markets," Resources Policy, Elsevier, vol. 66(C).
    33. Algieri, Bernardina & Leccadito, Arturo, 2017. "Assessing contagion risk from energy and non-energy commodity markets," Energy Economics, Elsevier, vol. 62(C), pages 312-322.
    34. Gian Piero Aielli, 2013. "Dynamic Conditional Correlation: On Properties and Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 282-299, July.
    35. Yuan-Hung Hsu Ku & Ho-Chyuan Chen & Kuang-Hua Chen, 2007. "On the application of the dynamic conditional correlation model in estimating optimal time-varying hedge ratios," Applied Economics Letters, Taylor & Francis Journals, vol. 14(7), pages 503-509.
    36. repec:taf:jnlbes:v:30:y:2012:i:2:p:212-228 is not listed on IDEAS
    37. Wei Su, Chi & Wang, Xiao-Qing & Tao, Ran & Oana-Ramona, Lobonţ, 2019. "Do oil prices drive agricultural commodity prices? Further evidence in a global bio-energy context," Energy, Elsevier, vol. 172(C), pages 691-701.
    38. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    39. Gema Fernández-Avilés & José-María Montero & Lidia Sanchis-Marco, 2020. "Extreme downside risk co-movement in commodity markets during distress periods: a multidimensional scaling approach," The European Journal of Finance, Taylor & Francis Journals, vol. 26(12), pages 1207-1237, August.
    40. Zimmer, Yelto & Marques, Giulio V., 2021. "Energy cost to produce and transport crops – The driver for crop prices? Case study for Mato Grosso, Brazil," Energy, Elsevier, vol. 225(C).
    41. Deepayan Debnath & Madhu Khanna & Deepak Rajagopal & David Zilberman, 2019. "The Future of Biofuels in an Electrifying Global Transportation Sector: Imperative, Prospects and Challenges," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 563-582, December.
    42. Zhang, Dayong & Hu, Min & Ji, Qiang, 2020. "Financial markets under the global pandemic of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
    43. Sun, Yanpeng & Mirza, Nawazish & Qadeer, Abdul & Hsueh, Hsin-Pei, 2021. "Connectedness between oil and agricultural commodity prices during tranquil and volatile period. Is crude oil a victim indeed?," Resources Policy, Elsevier, vol. 72(C).
    44. Dervis Kirikkaleli & Ibrahim Darbaz, 2021. "The Causal Linkage between Energy Price and Food Price," Energies, MDPI, vol. 14(14), pages 1-13, July.
    45. Shiferaw, Yegnanew A., 2019. "Time-varying correlation between agricultural commodity and energy price dynamics with Bayesian multivariate DCC-GARCH models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    46. Zhang, Chuanguo & Qu, Xuqin, 2015. "The effect of global oil price shocks on China's agricultural commodities," Energy Economics, Elsevier, vol. 51(C), pages 354-364.
    47. Filip, Ondrej & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2019. "Food versus fuel: An updated and expanded evidence," Energy Economics, Elsevier, vol. 82(C), pages 152-166.
    48. Mensi, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Yoon, Seong-Min, 2014. "Dynamic spillovers among major energy and cereal commodity prices," Energy Economics, Elsevier, vol. 43(C), pages 225-243.
    49. Chowdhury, Mohammad Ashraful Ferdous & Meo, Muhammad Saeed & Uddin, Ajim & Haque, Md. Mahmudul, 2021. "Asymmetric effect of energy price on commodity price: New evidence from NARDL and time frequency wavelet approaches," Energy, Elsevier, vol. 231(C).
    50. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    51. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    52. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    53. Alain McLaren, 2015. "Asymmetry in Price Transmission in Agricultural Markets," Review of Development Economics, Wiley Blackwell, vol. 19(2), pages 415-433, May.
    54. Zhu, Bo & Lin, Renda & Deng, Yuanyue & Chen, Pingshe & Chevallier, Julien, 2021. "Intersectoral systemic risk spillovers between energy and agriculture under the financial and COVID-19 crises," Economic Modelling, Elsevier, vol. 105(C).
    55. A. I. McLeod & W. K. Li, 1983. "Diagnostic Checking Arma Time Series Models Using Squared‐Residual Autocorrelations," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 269-273, July.
    56. Yip, Pick Schen & Brooks, Robert & Do, Hung Xuan & Nguyen, Duc Khuong, 2020. "Dynamic volatility spillover effects between oil and agricultural products," International Review of Financial Analysis, Elsevier, vol. 69(C).
    57. Bouri, Elie & Lucey, Brian & Saeed, Tareq & Vo, Xuan Vinh, 2021. "The realized volatility of commodity futures: Interconnectedness and determinants#," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 139-151.
    58. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Sensoy, Ahmet & Kang, Sang Hoon, 2019. "Energy, precious metals, and GCC stock markets: Is there any risk spillover?," Pacific-Basin Finance Journal, Elsevier, vol. 56(C), pages 45-70.
    59. Meng, Juan & Nie, He & Mo, Bin & Jiang, Yonghong, 2020. "Risk spillover effects from global crude oil market to China’s commodity sectors," Energy, Elsevier, vol. 202(C).
    60. Kang, Sang Hoon & McIver, Ron & Yoon, Seong-Min, 2017. "Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets," Energy Economics, Elsevier, vol. 62(C), pages 19-32.
    61. Eissa, Mohamad Abdelaziz & Al Refai, Hisham, 2019. "Modelling the symmetric and asymmetric relationships between oil prices and those of corn, barley, and rapeseed oil," Resources Policy, Elsevier, vol. 64(C).
    62. Han, Liyan & Jin, Jiayu & Wu, Lei & Zeng, Hongchao, 2020. "The volatility linkage between energy and agricultural futures markets with external shocks," International Review of Financial Analysis, Elsevier, vol. 68(C).
    63. El Hedi Arouri, Mohamed & Jouini, Jamel & Nguyen, Duc Khuong, 2011. "Volatility spillovers between oil prices and stock sector returns: Implications for portfolio management," Journal of International Money and Finance, Elsevier, vol. 30(7), pages 1387-1405.
    64. Wu, Fei & Zhao, Wan-Li & Ji, Qiang & Zhang, Dayong, 2020. "Dependency, centrality and dynamic networks for international commodity futures prices," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 118-132.
    65. Karel Janda & Ladislav Krištoufek, 2019. "The Relationship Between Fuel and Food Prices: Methods and Outcomes," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 195-216, October.
    66. Barbaglia, Luca & Croux, Christophe & Wilms, Ines, 2020. "Volatility spillovers in commodity markets: A large t-vector autoregressive approach," Energy Economics, Elsevier, vol. 85(C).
    67. Helmut Herwartz & Alberto Saucedo, 2020. "Food–oil volatility spillovers and the impact of distinct biofuel policies on price uncertainties on feedstock markets," Agricultural Economics, International Association of Agricultural Economists, vol. 51(3), pages 387-402, May.
    68. Guhathakurta, Kousik & Dash, Saumya Ranjan & Maitra, Debasish, 2020. "Period specific volatility spillover based connectedness between oil and other commodity prices and their portfolio implications," Energy Economics, Elsevier, vol. 85(C).
    69. Zhang, Dayong & Broadstock, David C., 2020. "Global financial crisis and rising connectedness in the international commodity markets," International Review of Financial Analysis, Elsevier, vol. 68(C).
    70. Ji, Qiang & Bouri, Elie & Roubaud, David & Kristoufek, Ladislav, 2019. "Information interdependence among energy, cryptocurrency and major commodity markets," Energy Economics, Elsevier, vol. 81(C), pages 1042-1055.
    71. Yang, Baochen & Pu, Yingjian & Su, Yunpeng, 2020. "The financialization of Chinese commodity markets," Finance Research Letters, Elsevier, vol. 34(C).
    72. Kumar, Satish & Tiwari, Aviral Kumar & Raheem, Ibrahim Dolapo & Hille, Erik, 2021. "Time-varying dependence structure between oil and agricultural commodity markets: A dependence-switching CoVaR copula approach," Resources Policy, Elsevier, vol. 72(C).
    73. Claudiu Albulescu & Aviral Tiwari & Qiang Ji, 2020. "Copula-based local dependence between energy, agriculture and metal commodity markets," Papers 2003.04007, arXiv.org.
    74. Gozgor, Giray & Lau, Chi Keung Marco & Bilgin, Mehmet Huseyin, 2016. "Commodity markets volatility transmission: Roles of risk perceptions and uncertainty in financial markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 44(C), pages 35-45.
    75. Hanif, Waqas & Areola Hernandez, Jose & Shahzad, Syed Jawad Hussain & Yoon, Seong-Min, 2021. "Tail dependence risk and spillovers between oil and food prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 195-209.
    76. Chang, Chia-Lin & Liu, Chia-Ping & McAleer, Michael, 2019. "Volatility spillovers for spot, futures, and ETF prices in agriculture and energy," Energy Economics, Elsevier, vol. 81(C), pages 779-792.
    77. An, Sufang & Gao, Xiangyun & An, Haizhong & An, Feng & Sun, Qingru & Liu, Siyao, 2020. "Windowed volatility spillover effects among crude oil prices," Energy, Elsevier, vol. 200(C).
    78. Song-Zan Chiou-Wei, Sheng-Hung Chen, and Zhen Zhu, 2019. "Energy and Agricultural Commodity Markets Interaction: An Analysis of Crude Oil, Natural Gas, Corn, Soybean, and Ethanol Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    79. Qiu, Cheng & Colson, Gregory & Escalante, Cesar & Wetzstein, Michael, 2012. "Considering macroeconomic indicators in the food before fuel nexus," Energy Economics, Elsevier, vol. 34(6), pages 2021-2028.
    80. Tan Ngoc Vu & Chi Minh Ho & Thang Cong Nguyen & Duc Hong Vo, 2020. "The Determinants of Risk Transmission between Oil and Agricultural Prices: An IPVAR Approach," Agriculture, MDPI, vol. 10(4), pages 1-14, April.
    81. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2014. "Oil price shocks and agricultural commodity prices," Energy Economics, Elsevier, vol. 44(C), pages 22-35.
    82. Marc F. Bellemare, 2015. "Rising Food Prices, Food Price Volatility, and Social Unrest," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(1), pages 1-21.
    83. Baillie, Richard T & Myers, Robert J, 1991. "Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 109-124, April-Jun.
    84. Karel Janda & Ladislav Kristoufek, 2019. "The relationship between fuel and food prices: Methods, outcomes, and lessons for commodity price risk management," CAMA Working Papers 2019-20, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    85. Debdatta Pal & Subrata Kumar Mitra, 2020. "Time-frequency dynamics of return spillover from crude oil to agricultural commodities," Applied Economics, Taylor & Francis Journals, vol. 52(49), pages 5426-5445, October.
    86. Cheng, Sheng & Cao, Yan, 2019. "On the relation between global food and crude oil prices: An empirical investigation in a nonlinear framework," Energy Economics, Elsevier, vol. 81(C), pages 422-432.
    87. Fasanya, Ismail & Akinbowale, Seun, 2019. "Modelling the return and volatility spillovers of crude oil and food prices in Nigeria," Energy, Elsevier, vol. 169(C), pages 186-205.
    88. Pal, Debdatta & Mitra, Subrata K., 2019. "Correlation dynamics of crude oil with agricultural commodities: A comparison between energy and food crops," Economic Modelling, Elsevier, vol. 82(C), pages 453-466.
    89. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Yoshino, Naoyuki, 2019. "Energy and Food Security: Linkages through Price Volatility," Energy Policy, Elsevier, vol. 128(C), pages 796-806.
    90. Umar, Zaghum & Jareño, Francisco & Escribano, Ana, 2021. "Agricultural commodity markets and oil prices: An analysis of the dynamic return and volatility connectedness," Resources Policy, Elsevier, vol. 73(C).
    91. Avalos, Fernando, 2014. "Do oil prices drive food prices? The tale of a structural break," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 253-271.
    92. Hung, Ngo Thai, 2021. "Oil prices and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Resources Policy, Elsevier, vol. 73(C).
    93. Cui, Jinxin & Maghyereh, Aktham & Goh, Mark & Zou, Huiwen, 2022. "Risk spillovers and time-varying links between international oil and China’s commodity futures markets: Fresh evidence from the higher-order moments," Energy, Elsevier, vol. 238(PB).
    94. Zhengyi Dong, 2019. "Does the Development of Bioenergy Exacerbate the Price Increase of Maize?," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    95. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    96. Christopher L. Gilbert & Harriet Kasidi Mugera, 2020. "Competitive Storage, Biofuels and the Corn Price," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(2), pages 384-411, June.
    97. Clark Lundberg & Tristan Skolrud & Bahram Adrangi & Arjun Chatrath, 2021. "Oil Price Pass through to Agricultural Commodities†," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(2), pages 721-742, March.
    98. Luo, Jiawen & Ji, Qiang, 2018. "High-frequency volatility connectedness between the US crude oil market and China's agricultural commodity markets," Energy Economics, Elsevier, vol. 76(C), pages 424-438.
    99. Madhu Khanna & Deepak Rajagopal & David Zilberman, 2021. "Lessons Learned from US Experience with Biofuels: Comparing the Hype with the Evidence," Review of Environmental Economics and Policy, University of Chicago Press, vol. 15(1), pages 67-86.
    100. Jiawen Luo & Qun Zhang, 2021. "Risk contagions between global oil markets and China’s agricultural commodity markets under structural breaks," Applied Economics, Taylor & Francis Journals, vol. 53(5), pages 628-649, January.
    101. Hasanov, Akram Shavkatovich & Do, Hung Xuan & Shaiban, Mohammed Sharaf, 2016. "Fossil fuel price uncertainty and feedstock edible oil prices: Evidence from MGARCH-M and VIRF analysis," Energy Economics, Elsevier, vol. 57(C), pages 16-27.
    102. Guillouzouic-Le Corff, Arthur, 2018. "Did oil prices trigger an innovation burst in biofuels?," Energy Economics, Elsevier, vol. 75(C), pages 547-559.
    103. Cui, Jinxin & Goh, Mark & Zou, Huiwen, 2021. "Coherence, extreme risk spillovers, and dynamic linkages between oil and China’s commodity futures markets," Energy, Elsevier, vol. 225(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
    2. Bossman, Ahmed & Gubareva, Mariya & Teplova, Tamara, 2023. "Asymmetric effects of market uncertainties on agricultural commodities," Energy Economics, Elsevier, vol. 127(PB).
    3. Feng, Yun & Yang, Jie & Huang, Qian, 2023. "Multiscale correlation analysis of Sino-US corn futures markets and the impact of international crude oil price: A new perspective from the multifractal method," Finance Research Letters, Elsevier, vol. 53(C).
    4. Derick Quintino & Cristiane Ogino & Inzamam Ul Haq & Paulo Ferreira & Márcia Oliveira, 2023. "An Analysis of Dynamic Correlations among Oil, Natural Gas and Ethanol Markets: New Evidence from the Pre- and Post-COVID-19 Crisis," Energies, MDPI, vol. 16(5), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Adewuyi, Adeolu O. & Lee, Chien-Chiang, 2022. "Quantile risk spillovers between energy and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Energy Economics, Elsevier, vol. 113(C).
    2. Yoon, Seong-Min, 2022. "On the interdependence between biofuel, fossil fuel and agricultural food prices: Evidence from quantile tests," Renewable Energy, Elsevier, vol. 199(C), pages 536-545.
    3. Khalfaoui, Rabeh & Shahzad, Umer & Ghaemi Asl, Mahdi & Ben Jabeur, Sami, 2023. "Investigating the spillovers between energy, food, and agricultural commodity markets: New insights from the quantile coherency approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 63-80.
    4. Cao, Yan & Cheng, Sheng, 2021. "Impact of COVID-19 outbreak on multi-scale asymmetric spillovers between food and oil prices," Resources Policy, Elsevier, vol. 74(C).
    5. Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
    6. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    7. Cui, Jinxin & Maghyereh, Aktham & Goh, Mark & Zou, Huiwen, 2022. "Risk spillovers and time-varying links between international oil and China’s commodity futures markets: Fresh evidence from the higher-order moments," Energy, Elsevier, vol. 238(PB).
    8. Naeem, Muhammad Abubakr & Hasan, Mudassar & Arif, Muhammad & Suleman, Muhammad Tahir & Kang, Sang Hoon, 2022. "Oil and gold as a hedge and safe-haven for metals and agricultural commodities with portfolio implications," Energy Economics, Elsevier, vol. 105(C).
    9. Cheng, Natalie Fang Ling & Hasanov, Akram Shavkatovich & Poon, Wai Ching & Bouri, Elie, 2023. "The US-China trade war and the volatility linkages between energy and agricultural commodities," Energy Economics, Elsevier, vol. 120(C).
    10. Albulescu, Claudiu Tiberiu & Tiwari, Aviral Kumar & Ji, Qiang, 2020. "Copula-based local dependence among energy, agriculture and metal commodities markets," Energy, Elsevier, vol. 202(C).
    11. Hanif, Waqas & Areola Hernandez, Jose & Shahzad, Syed Jawad Hussain & Yoon, Seong-Min, 2021. "Tail dependence risk and spillovers between oil and food prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 195-209.
    12. Claudiu Albulescu & Aviral Tiwari & Qiang Ji, 2020. "Copula-based local dependence between energy, agriculture and metal commodity markets," Papers 2003.04007, arXiv.org.
    13. Farid, Saqib & Naeem, Muhammad Abubakr & Paltrinieri, Andrea & Nepal, Rabindra, 2022. "Impact of COVID-19 on the quantile connectedness between energy, metals and agriculture commodities," Energy Economics, Elsevier, vol. 109(C).
    14. Cui, Jinxin & Goh, Mark & Zou, Huiwen, 2021. "Coherence, extreme risk spillovers, and dynamic linkages between oil and China’s commodity futures markets," Energy, Elsevier, vol. 225(C).
    15. Hung, Ngo Thai, 2021. "Oil prices and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Resources Policy, Elsevier, vol. 73(C).
    16. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    17. Sun, Yunpeng & Gao, Pengpeng & Raza, Syed Ali & Shah, Nida & Sharif, Arshian, 2023. "The asymmetric effects of oil price shocks on the world food prices: Fresh evidence from quantile-on-quantile regression approach," Energy, Elsevier, vol. 270(C).
    18. Raza, Syed Ali & Guesmi, Khaled & Belaid, Fateh & Shah, Nida, 2022. "Time-frequency causality and connectedness between oil price shocks and the world food prices," Research in International Business and Finance, Elsevier, vol. 62(C).
    19. Waseem Khan & Vishal Sharma & Saghir Ahmad Ansari, 2022. "Modeling the dynamics of oil and agricultural commodity price nexus in linear and nonlinear frameworks: A case of emerging economy," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1733-1784, August.
    20. Adeleke, Musefiu A. & Awodumi, Olabanji B. & Adewuyi, Adeolu O., 2022. "Return and volatility connectedness among commodity markets during major crises periods: Static and dynamic analyses with asymmetries," Resources Policy, Elsevier, vol. 79(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:rdevec:v:26:y:2022:i:3:p:1798-1849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1363-6669 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.