IDEAS home Printed from https://ideas.repec.org/a/ags/jlaare/246250.html
   My bibliography  Save this article

Transitioning to Organic Crop Production: A Dynamic Programming Approach

Author

Listed:
  • Delbridge, Timothy A.
  • King, Robert P.

Abstract

Despite evidence that organic cropping systems in the Midwest can be more profitable than conventional systems, only a small percentage of cropland has been certified as organic. This paper models the decision to transition to organic crop production as a dynamic programming problem in which investment is reversible but includes sunk costs. Results indicate that the risk and unrecoverable costs associated with organic transition lead to a significant option value, and this provides a partial explanation for low transition rates in the baseline scenario. Sensitivity to expected organic yield and price levels is explored, as are the costliness of reverse transition and the short-term effect of high conventional return levels.

Suggested Citation

  • Delbridge, Timothy A. & King, Robert P., 2016. "Transitioning to Organic Crop Production: A Dynamic Programming Approach," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(3), pages 1-18, September.
  • Handle: RePEc:ags:jlaare:246250
    DOI: 10.22004/ag.econ.246250
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/246250/files/JARE_September2016__8_Delbridge_481-498.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.246250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Schatzki, Todd, 2003. "Options, uncertainty and sunk costs:: an empirical analysis of land use change," Journal of Environmental Economics and Management, Elsevier, vol. 46(1), pages 86-105, July.
    2. Na Jin & Sergio Lence & Chad Hart & Dermot Hayes, 2012. "The Long-Term Structure of Commodity Futures," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(3), pages 718-735.
    3. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    4. Mario J. Miranda & Paul L. Fackler, 2004. "Applied Computational Economics and Finance," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262633094, December.
    5. Delbridge, Timothy A., 2014. "Comparative Profitability of Organic and Conventional Cropping Systems: An Update to Per-Hectare and Whole-Farm Analysis," Staff Papers 164685, University of Minnesota, Department of Applied Economics.
    6. Feng Song & Jinhua Zhao & Scott M. Swinton, 2011. "Switching to Perennial Energy Crops Under Uncertainty and Costly Reversibility," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 764-779.
    7. Delbridge, Timothy A. & Fernholz, Carmen & King, Robert P. & Lazarus, William, 2013. "A whole-farm profitability analysis of organic and conventional cropping systems," Agricultural Systems, Elsevier, vol. 122(C), pages 1-10.
    8. Singerman, Ariel & Lence, Sergio H. & Kimble-Evans, Amanda, 2010. "Organic Crop Prices, or 2x Conventional Ones?," Staff General Research Papers Archive 31544, Iowa State University, Department of Economics.
    9. Abebayehu Tegene & Keith Wiebe & Betsey Kuhn, 1999. "Irreversible Investment Under Uncertainty: Conservation Easements and the Option to Develop Agricultural Land," Journal of Agricultural Economics, Wiley Blackwell, vol. 50(2), pages 203-219, May.
    10. Bessembinder, Hendrik, et al, 1995. "Mean Reversion in Equilibrium Asset Prices: Evidence from the Futures Term Structure," Journal of Finance, American Finance Association, vol. 50(1), pages 361-375, March.
    11. Delbridge, Timothy A. & King, Robert P. & Nordquist, Dale W. & DiGiacomo, Gigi & Moynihan, Meg, 2015. "Farm Performance during the Transition to Organic Production: Analysis and Planning Tools Based on Minnesota Farm Record Data," Staff Papers 212429, University of Minnesota, Department of Applied Economics.
    12. Uematsu, Hiroki & Mishra, Ashok K., 2012. "Organic farmers or conventional farmers: Where's the money?," Ecological Economics, Elsevier, vol. 78(C), pages 55-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hadachek, Jeffrey & Saitone, Tina L. & Sexton, Richard J. & Raszap Skorbiansky, Sharon & Thornsbury, Suzanne & Effland, Anne, 2022. "Organic Feed Grains and Livestock: Factors That Influence Outcomes in Thinly Traded Markets," USDA Miscellaneous 319355, United States Department of Agriculture.
    2. Erik Nelson & John Fitzgerald & Nathan Tefft, 2019. "The distributional impact of a green payment policy for organic fruit," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-25, February.
    3. Komarek, Adam M. & De Pinto, Alessandro & Smith, Vincent H., 2020. "A review of types of risks in agriculture: What we know and what we need to know," Agricultural Systems, Elsevier, vol. 178(C).
    4. Wieme, Rachel A. & Carpenter-Boggs, Lynne A. & Crowder, David W. & Murphy, Kevin M. & Reganold, John P., 2020. "Agronomic and economic performance of organic forage, quinoa, and grain crop rotations in the Palouse region of the Pacific Northwest, USA," Agricultural Systems, Elsevier, vol. 177(C).
    5. Hadachek, Jeffrey & Saitone, Tina L & Sexton, Richard J & Skorbiansky, Sharon Raszap & Thornsbury, Suzanne & Effland, Anne, 2022. "Organic Feed Grains and Livestock: Factors That Influence Outcomes in Thinly Traded Markets," Economic Research Report 327179, United States Department of Agriculture, Economic Research Service.
    6. De Lapparent, Alice & Sabatier, Rodolphe & Paut, Raphaël & Martin, Sophie, 2023. "Perennial transitions from market gardening towards mixed fruit tree - vegetable systems," Agricultural Systems, Elsevier, vol. 207(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiqing Miao & David A. Hennessy & Hongli Feng, 2022. "Grassland easement evaluation and acquisition with uncertain conversion and conservation returns," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 70(1), pages 41-61, March.
    2. Dumortier, Jerome & Kauffman, Nathan & Hayes, Dermot J., 2017. "Production and spatial distribution of switchgrass and miscanthus in the United States under uncertainty and sunk cost," Energy Economics, Elsevier, vol. 67(C), pages 300-314.
    3. Luca Di Corato, 2018. "Rural land development under hyperbolic discounting: a real option approach," Letters in Spatial and Resource Sciences, Springer, vol. 11(2), pages 167-182, July.
    4. Dumortier, Jerome Robert Florian, 2011. "The impact of forest offset credits under a stochastic carbon price on agriculture using a rational expectations and real options framework," ISU General Staff Papers 201101010800001160, Iowa State University, Department of Economics.
    5. Di Corato, Luca & Hess, Sebastian, 2013. "Farmland Investments in Africa: What’s the Deal?," Working Paper Series 2013:10, Swedish University of Agricultural Sciences, Department Economics.
    6. Luca Di Corato & Dimitrios Zormpas, 2022. "Investment in farming under uncertainty and decoupled support: a real options approach," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(4), pages 876-909.
    7. Di Corato, Luca & Brady, Mark V., 2019. "Passive farming and land development: A real options approach," Land Use Policy, Elsevier, vol. 80(C), pages 32-46.
    8. Corato, Luca Di & Hess, Sebastian, 2013. "A Dynamic Stochastic Programming Framework for Modeling Large Scale Land Deals in Developing Countries," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150190, Agricultural and Applied Economics Association.
    9. Dumortier, Jerome & Kauffman, Nathan & Hayes, Dermot J., 2015. "Uncertainty and Time-to-Build in Bioenergy Crop Production," ISU General Staff Papers 201501010800001019, Iowa State University, Department of Economics.
    10. Magalhães de Oliveira, Gustavo & Sellare, Jorge & Cisneros, Elias, Börner, Jan & Börner, Jan, 2024. "Mind your language: Political signaling and deforestation in the Brazilian Amazon," Discussion Papers 333334, University of Bonn, Center for Development Research (ZEF).
    11. McCarty, Tanner & Sesmero, Juan, 2021. "Contracting for perennial energy crops and the cost-effectiveness of the Biomass Crop Assistance Program," Energy Policy, Elsevier, vol. 149(C).
    12. Dumortier, Jerome, 2012. "Welfare changes associated with forest carbon offset credits in the United States," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124632, Agricultural and Applied Economics Association.
    13. Lee, Sangjun & Zhao, Jinhua, 2021. "Adaptation to climate change: Extreme events versus gradual changes," Journal of Economic Dynamics and Control, Elsevier, vol. 133(C).
    14. Clark Lundberg & Ryan Abman, 2022. "Maize price volatility and deforestation," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(2), pages 693-716, March.
    15. Wong, Kit Pong & Yi, Long, 2013. "Irreversibility, mean reversion, and investment timing," Economic Modelling, Elsevier, vol. 30(C), pages 770-775.
    16. Mooney, Daniel F. & Barham, Bradford L. & Lian, Chang, 2013. "Sustainable Biofuels, Marginal Agricultural Lands, and Farm Supply Response: Micro-Evidence for Southwest Wisconsin," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150510, Agricultural and Applied Economics Association.
    17. Xian, Hui & Colson, Gregory & Mei, Bin & Wetzstein, Michael E., 2015. "Co-firing coal with wood pellets for U.S. electricity generation: A real options analysis," Energy Policy, Elsevier, vol. 81(C), pages 106-116.
    18. Wong, Kit Pong, 2011. "Progressive taxation and the intensity and timing of investment," Economic Modelling, Elsevier, vol. 28(1-2), pages 100-108, January.
    19. Cantegril, Pierre & Paradis, Gregory & LeBel, Luc & Raulier, Frédéric, 2019. "Bioenergy production to improve value-creation potential of strategic forest management plans in mixed-wood forests of Eastern Canada," Applied Energy, Elsevier, vol. 247(C), pages 171-181.
    20. Work, James & Hauer, Grant & Luckert, M.K. (Marty), 2018. "What ethanol prices would induce growers to switch from agriculture to poplar in Alberta? A multiple options approach," Journal of Forest Economics, Elsevier, vol. 33(C), pages 51-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:jlaare:246250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/waeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.