IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v149y2021ics0301421520307291.html
   My bibliography  Save this article

Contracting for perennial energy crops and the cost-effectiveness of the Biomass Crop Assistance Program

Author

Listed:
  • McCarty, Tanner
  • Sesmero, Juan

Abstract

Using a framework that meshes mechanism design theory and real options analysis, we recover the contract terms that a biomass processing plant would offer a farmer to induce conversion of land to perennial energy crops. We consider three contract terms: performance payment (price per dry ton of biomass), establishment payment (one-time payment per acre planted), and acreage payment (annual payment per acre planted). We find that, in equilibrium, the contract signed by farmers and buyers of Miscanthus (the perennial energy crop of choice in our analysis) uses a combination of all three payments. Conditional on the equilibrium contract, we show how changes in the structure of the Biomass Crop Assistance Program affect cost and risk along the vertical supply chain. Our analysis reveals that subsidies to both establishment and acreage payments are equally cost-effective in reducing production cost of cellulosic biofuels. However, establishment subsidies are more effective at reducing risk for the buyer and, therefore, dominate acreage subsidies from a risk-adjusted cost-effectiveness criterion. This suggests that a larger share of the Biomass Crop Assistance Program budget should be allocated to establishment subsidies to the detriment of matching payments (subsidies to performance payments) and maintenance payments (subsidies to acreage payments).

Suggested Citation

  • McCarty, Tanner & Sesmero, Juan, 2021. "Contracting for perennial energy crops and the cost-effectiveness of the Biomass Crop Assistance Program," Energy Policy, Elsevier, vol. 149(C).
  • Handle: RePEc:eee:enepol:v:149:y:2021:i:c:s0301421520307291
    DOI: 10.1016/j.enpol.2020.112018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520307291
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.112018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miao, Ruiqing & Khanna, Madhu, 2017. "Costs of meeting a cellulosic biofuel mandate with perennial energy crops: Implications for policy," Energy Economics, Elsevier, vol. 64(C), pages 321-334.
    2. Mohit Anand & Ruiqing Miao & Madhu Khanna, 2019. "Adopting bioenergy crops: Does farmers’ attitude toward loss matter?," Agricultural Economics, International Association of Agricultural Economists, vol. 50(4), pages 435-450, July.
    3. Miao, Ruiqing & Khanna, Madhu, 2017. "Limited Impact of Biomass Crop Assistance Program (BCAP) Under Current Funding Levels," farmdoc daily, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics, vol. 7, August.
    4. Larson, James A. & English, Burton C. & He, Lixia, 2008. "Economic Analysis of Farm-Level Supply of Biomass Feedstocks for Energy Production Under Alternative Contract Scenarios and Risk," Integration of Agricultural and Energy Systems Conference, February 12-13, 2008, Atlanta, Georgia 48706, Farm Foundation.
    5. Madhu Khanna & Jordan Louviere & Xi Yang, 2017. "Motivations to grow energy crops: the role of crop and contract attributes," Agricultural Economics, International Association of Agricultural Economists, vol. 48(3), pages 263-277, May.
    6. Mario J. Miranda & Paul L. Fackler, 2004. "Applied Computational Economics and Finance," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262633094, December.
    7. Wolbert-Haverkamp, Matthias & Feil, Jan-Henning & Mußhoff, Oliver, 2014. "The value chain of heat production from woody biomass under market competition and different intervention systems: An agent-based real options model," DARE Discussion Papers 1407, Georg-August University of Göttingen, Department of Agricultural Economics and Rural Development (DARE).
    8. Postali, Fernando A.S. & Picchetti, Paulo, 2006. "Geometric Brownian Motion and structural breaks in oil prices: A quantitative analysis," Energy Economics, Elsevier, vol. 28(4), pages 506-522, July.
    9. Fewell, Jason E. & Bergtold, Jason S. & Williams, Jeffery R., 2016. "Farmers' willingness to contract switchgrass as a cellulosic bioenergy crop in Kansas," Energy Economics, Elsevier, vol. 55(C), pages 292-302.
    10. Price, T. Jeffrey & Wetzstein, Michael E., 1999. "Irreversible Investment Decisions In Perennial Crops With Yield And Price Uncertainty," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 24(1), pages 1-13, July.
    11. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    12. Xiaoxue Du & Madhu Khanna & Liang Lu & Xi Yang & David Zilberman, 2017. "Contracting in the Biofuel Sector," Natural Resource Management and Policy, in: Madhu Khanna & David Zilberman (ed.), Handbook of Bioenergy Economics and Policy: Volume II, pages 401-425, Springer.
    13. Metcalf, Gilbert E. & Hassett, Kevin A., 1995. "Investment under alternative return assumptions Comparing random walks and mean reversion," Journal of Economic Dynamics and Control, Elsevier, vol. 19(8), pages 1471-1488, November.
    14. Schmit, T.M. & J., Luo & Conrad, J.M., 2011. "Estimating the influence of U.S. ethanol policy on plant investment decisions: A real options analysis with two stochastic variables," Energy Economics, Elsevier, vol. 33(6), pages 1194-1205.
    15. Feng Song & Jinhua Zhao & Scott M. Swinton, 2011. "Switching to Perennial Energy Crops Under Uncertainty and Costly Reversibility," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 764-779.
    16. Alexander, Corinne & Ivanic, Rasto & Rosch, Stephanie & Tyner, Wallace & Wu, Steven Y. & Yoder, Joshua R., 2012. "Contract theory and implications for perennial energy crop contracting," Energy Economics, Elsevier, vol. 34(4), pages 970-979.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madhu Khanna & Ruiqing Miao, 2022. "Inducing the adoption of emerging technologies for sustainable intensification of food and renewable energy production: insights from applied economics," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(1), pages 1-23, January.
    2. McCarty, Tanner & Sesmero, Juan, 2014. "Uncertainty, Irreversibility, and Investment in Second-Generation Biofuels," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 179201, Agricultural and Applied Economics Association.
    3. McCarty, Tanner & Sesmero, Juan & Gramig, Ben, 2016. "Contracting for Perennial Energy Crops Under Uncertainty and Costly Reversibility," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236092, Agricultural and Applied Economics Association.
    4. Dumortier, Jerome & Kauffman, Nathan & Hayes, Dermot J., 2017. "Production and spatial distribution of switchgrass and miscanthus in the United States under uncertainty and sunk cost," Energy Economics, Elsevier, vol. 67(C), pages 300-314.
    5. Leibensperger, Carrie & Yang, Pan & Zhao, Qiankun & Wei, Shuran & Cai, Ximing, 2021. "The synergy between stakeholders for cellulosic biofuel development: Perspectives, opportunities, and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Di Corato, Luca & Gazheli, Ardjan & Lagerkvist, Carl-Johan, 2013. "Investing in energy forestry under uncertainty," Forest Policy and Economics, Elsevier, vol. 34(C), pages 56-64.
    7. Xian, Hui & Colson, Gregory & Mei, Bin & Wetzstein, Michael E., 2015. "Co-firing coal with wood pellets for U.S. electricity generation: A real options analysis," Energy Policy, Elsevier, vol. 81(C), pages 106-116.
    8. Delbridge, Timothy A. & King, Robert P., 2016. "Transitioning to Organic Crop Production: A Dynamic Programming Approach," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(3), pages 1-18, September.
    9. Dumortier, Jerome Robert Florian, 2011. "The impact of forest offset credits under a stochastic carbon price on agriculture using a rational expectations and real options framework," ISU General Staff Papers 201101010800001160, Iowa State University, Department of Economics.
    10. Löfgren, Åsa & Millock, Katrin & Nauges, Céline, 2008. "The effect of uncertainty on pollution abatement investments: Measuring hurdle rates for Swedish industry," Resource and Energy Economics, Elsevier, vol. 30(4), pages 475-491, December.
    11. Madhu Khanna, 2021. "Digital Transformation of the Agricultural Sector: Pathways, Drivers and Policy Implications," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1221-1242, December.
    12. Seo, Sangtaek & Segarra, Eduardo & Mitchell, Paul D. & Leatham, David J., 2006. "Irrigation Technology Adoption in the Texas High Plains: A Real Options Approach," 2006 Annual meeting, July 23-26, Long Beach, CA 21427, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Burli, Pralhad & Lal, Pankaj & Wolde, Bernabas & Jose, Shibu & Bardhan, Sougata, 2019. "Factors affecting willingness to cultivate switchgrass: Evidence from a farmer survey in Missouri," Energy Economics, Elsevier, vol. 80(C), pages 20-29.
    14. Sant’Anna, Ana Claudia & Bergtold, Jason S. & Shanoyan, Aleksan & Caldas, Marcellus M. & Granco, Gabriel, 2022. "Biofuel feedstock contract attributes, substitutability and tradeoffs in sugarcane production for ethanol in the Brazilian Cerrado: A stated choice approach," Renewable Energy, Elsevier, vol. 185(C), pages 665-679.
    15. Xian, Hui & Karali, Berna & Colson, Gregory & Wetzstein, Michael E., 2015. "Diesel or compressed natural gas? A real options evaluation of the U.S. natural gas boom on fuel choice for trucking fleets," Energy, Elsevier, vol. 90(P2), pages 1342-1348.
    16. West, Jason, 2018. "Optimising adaptation decisions in macadamia production using contingent claim valuation," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(4), October.
    17. Wong, Kit Pong & Yi, Long, 2013. "Irreversibility, mean reversion, and investment timing," Economic Modelling, Elsevier, vol. 30(C), pages 770-775.
    18. Wong, Kit Pong, 2011. "Progressive taxation and the intensity and timing of investment," Economic Modelling, Elsevier, vol. 28(1-2), pages 100-108, January.
    19. Sant'Anna, Ana Claudia & Bergtold, Jason & Shanoyan, Aleksan & Caldas, Marcellus & Granco, Gabriel, 2021. "Deal or No Deal? Analysis of Bioenergy Feedstock Contract Choice with Multiple Opt-out Options and Contract Attribute Substitutability," 2021 Conference, August 17-31, 2021, Virtual 315289, International Association of Agricultural Economists.
    20. Posch, Olaf, 2009. "Structural estimation of jump-diffusion processes in macroeconomics," Journal of Econometrics, Elsevier, vol. 153(2), pages 196-210, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:149:y:2021:i:c:s0301421520307291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.