IDEAS home Printed from https://ideas.repec.org/a/wly/apecpp/v43y2021i4p1221-1242.html
   My bibliography  Save this article

Digital Transformation of the Agricultural Sector: Pathways, Drivers and Policy Implications

Author

Listed:
  • Madhu Khanna

Abstract

The digital transformation of agriculture is enabling the collection of vast amounts of geo‐referenced information about growing conditions within the field and facilitating the automated implementation of spatially varying input applications. This has the potential to increase production efficiency, reduce overapplication of inputs, lower input waste and pollution, and improve farm profitability. We discuss the pathways by which digital agricultural technologies have the potential to affect crop management, and current trends and patterns of adoption of digital technologies. We provide insights from the technology adoption literature on the factors that can be expected to influence the adoption of emerging digital technologies and the findings from the empirical literature on the determinants of adoption of these types of technologies. We conclude with a discussion of the design of policy incentives to induce the adoption of digital technologies cost‐effectively, the challenges in implementing such policies and the opportunity that digital technologies offer for addressing these challenges.

Suggested Citation

  • Madhu Khanna, 2021. "Digital Transformation of the Agricultural Sector: Pathways, Drivers and Policy Implications," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1221-1242, December.
  • Handle: RePEc:wly:apecpp:v:43:y:2021:i:4:p:1221-1242
    DOI: 10.1002/aepp.13103
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/aepp.13103
    Download Restriction: no

    File URL: https://libkey.io/10.1002/aepp.13103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Miao, Ruiqing & Khanna, Madhu, 2017. "Costs of meeting a cellulosic biofuel mandate with perennial energy crops: Implications for policy," Energy Economics, Elsevier, vol. 64(C), pages 321-334.
    2. Just, Richard E & Zilberman, David, 1983. "Stochastic Structure, Farm Size and Technology Adoption in Developing Agriculture," Oxford Economic Papers, Oxford University Press, vol. 35(2), pages 307-328, July.
    3. Khanna, Madhu & Zilberman, David, 1997. "Incentives, precision technology and environmental protection," Ecological Economics, Elsevier, vol. 23(1), pages 25-43, October.
    4. Schnitkey, Gary, 2012. "Crop Insurance in 2012," farmdoc daily, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics, vol. 2, July.
    5. Isik, Murat & Khanna, Madhu, 2002. "Variable-Rate Nitrogen Application Under Uncertainty: Implications For Profitability And Nitrogen Use," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 27(1), pages 1-16, July.
    6. Joshua D. Woodard & Alexander D. Pavlista & Gary D. Schnitkey & Paul A. Burgener & Kimberley A. Ward, 2012. "Government Insurance Program Design, Incentive Effects, and Technology Adoption: The Case of Skip-Row Crop Insurance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(4), pages 823-837.
    7. Brandes, Elke & McNunn, Gabriel Sean & Schulte, Lisa A. & Bonner, Ian J. & Muth, D. J. & Babcock, Bruce A. & Sharma, Bhavna & Heaton, Emily A., 2016. "Subfield profitability analysis reveals an economic case for cropland diversification," ISU General Staff Papers 201601010800001048, Iowa State University, Department of Economics.
    8. James Shortle, 2017. "Policy Nook: “Economic Incentives for Water Quality Protection”," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-11, April.
    9. Madhu Khanna & Jordan Louviere & Xi Yang, 2017. "Motivations to grow energy crops: the role of crop and contract attributes," Agricultural Economics, International Association of Agricultural Economists, vol. 48(3), pages 263-277, May.
    10. Bruce A. Babcock, 1992. "The Effects of Uncertainty on Optimal Nitrogen Applications," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 14(2), pages 271-280.
    11. Murat Isik & Madhu Khanna, 2003. "Stochastic Technology, Risk Preferences, and Adoption of Site-Specific Technologies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 305-317.
    12. Brandes, Elke & McNunn, Gabriel Sean & Schulte, Lisa A. & Bonner, Ian J. & Muth, D. J. & Babcock, Bruce A. & Sharma, Bhavna & Heaton, Emily A., 2016. "Subfield profitability analysis reveals an economic case for cropland diversification," ISU General Staff Papers 3442, Iowa State University, Department of Economics.
    13. Barnes, A.P. & Soto, I. & Eory, V. & Beck, B. & Balafoutis, A. & Sánchez, B. & Vangeyte, J. & Fountas, S. & van der Wal, T. & Gómez-Barbero, M., 2019. "Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers," Land Use Policy, Elsevier, vol. 80(C), pages 163-174.
    14. Ruiqing Miao & Madhu Khanna, 2020. "Harnessing Advances in Agricultural Technologies to Optimize Resource Utilization in the Food-Energy-Water Nexus," Annual Review of Resource Economics, Annual Reviews, vol. 12(1), pages 65-85, October.
    15. Zilberman, David & Khanna, Madhu & Lipper, Leslie, 1997. "Economics of new technologies for sustainable agriculture," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 41(1), pages 1-18.
    16. Schimmelpfennig, David & Ebel, Robert, 2011. "On the Doorstep of the Information Age: Recent Adoption of Precision Agriculture," Economic Information Bulletin 291945, United States Department of Agriculture, Economic Research Service.
    17. Khanna, Madhu & Isik, Murat & Zilberman, David, 2002. "Cost-effectiveness of alternative green payment policies for conservation technology adoption with heterogeneous land quality," Agricultural Economics, Blackwell, vol. 27(2), pages 157-174, August.
    18. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    19. Elinor Benami & Michael R. Carter, 2021. "Can digital technologies reshape rural microfinance? Implications for savings, credit, & insurance," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1196-1220, December.
    20. Athanasios Balafoutis & Bert Beck & Spyros Fountas & Jurgen Vangeyte & Tamme Van der Wal & Iria Soto & Manuel Gómez-Barbero & Andrew Barnes & Vera Eory, 2017. "Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics," Sustainability, MDPI, vol. 9(8), pages 1-28, July.
    21. Wolfert, Sjaak & Ge, Lan & Verdouw, Cor & Bogaardt, Marc-Jeroen, 2017. "Big Data in Smart Farming – A review," Agricultural Systems, Elsevier, vol. 153(C), pages 69-80.
    22. Uwe Deichmann & Aparajita Goyal & Deepak Mishra, 2016. "Will digital technologies transform agriculture in developing countries?," Agricultural Economics, International Association of Agricultural Economists, vol. 47(S1), pages 21-33, November.
    23. Madhu Khanna, 2001. "Sequential Adoption of Site-Specific Technologies and its Implications for Nitrogen Productivity: A Double Selectivity Model," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(1), pages 35-51.
    24. Lambert, Dayton M. & Lowenberg-DeBoer, James & Griffin, Terry W. & Peone, J. & Payne, Tim & Daberkow, Stan G., 2004. "Adoption, Profitability, And Making Better Use Of Precision Farming Data," Staff Papers 28615, Purdue University, Department of Agricultural Economics.
    25. Bojkić, Vedrana & Vrbančić, Marijana & Žibrin, Dragutin & Čut, Martina, 2016. "Digital Marketing in Agricultural Sector," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2016), Rovinj, Croatia, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Rovinj, Croatia, 8-9 September 2016, pages 136-141, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.
    26. Schimmelpfennig, David, 2016. "Farm Profits and Adoption of Precision Agriculture," Economic Research Report 249773, United States Department of Agriculture, Economic Research Service.
    27. François J Dessart & Jesús Barreiro-Hurlé & René van Bavel, 2019. "Behavioural factors affecting the adoption of sustainable farming practices: a policy-oriented review," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 46(3), pages 417-471.
    28. Robert Finger & Scott M. Swinton & Nadja El Benni & Achim Walter, 2019. "Precision Farming at the Nexus of Agricultural Production and the Environment," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 313-335, October.
    29. Miller, Noah J. & Griffin, Terry & Bergtold, Jason & Sharda, Ajay & Ciampitti, Ignacio, 2017. "Adoption of Precision Agriculture Technology Bundles on Kansas Farms," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252832, Southern Agricultural Economics Association.
    30. Ebel, Robert M. & Schimmelpfennig, David E., 2011. "The Information Age and Adoption of Precision Agriculture," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Margherita Masi & Marcello Rosa & Yari Vecchio & Luca Bartoli & Felice Adinolfi, 2022. "The long way to innovation adoption: insights from precision agriculture," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-17, December.
    2. Guo, Bingnan & Feng, Yu & Lin, Ji, 2023. "Digital inclusive finance and digital transformation of enterprises," Finance Research Letters, Elsevier, vol. 57(C).
    3. Xiaoxu Zhang & Xinyu Du, 2023. "Industry and Regional Peer Effects in Corporate Digital Transformation: The Moderating Effects of TMT Characteristics," Sustainability, MDPI, vol. 15(7), pages 1-22, March.
    4. McFadden, Jonathan & Njuki, Eric & Griffin, Terry, 2023. "Precision Agriculture in the Digital Era: Recent Adoption on U.S. Farms," USDA Miscellaneous 333550, United States Department of Agriculture.
    5. Wang, Tong & Jin, Hailong & Sieverding, Heidi L. & Rao, Xudong & Miao, Yuxin & Kumar, Sandeep & Redfearn, Daren & Nafchi, Ali, 2022. "Understanding farmer perceptions of precision agriculture profitability in the U.S. Midwest," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322502, Agricultural and Applied Economics Association.
    6. Madhu Khanna & Shady S. Atallah & Saurajyoti Kar & Bijay Sharma & Linghui Wu & Chengzheng Yu & Girish Chowdhary & Chinmay Soman & Kaiyu Guan, 2022. "Digital transformation for a sustainable agriculture in the United States: Opportunities and challenges," Agricultural Economics, International Association of Agricultural Economists, vol. 53(6), pages 924-937, November.
    7. Rachel Opitz & Philippe De Smedt & Victorino Mayoral-Herrera & Stefano Campana & Marco Vieri & Eamonn Baldwin & Carolina Perna & Daniele Sarri & Jeroen Verhegge, 2023. "Practicing Critical Zone Observation in Agricultural Landscapes: Communities, Technology, Environment and Archaeology," Land, MDPI, vol. 12(1), pages 1-20, January.
    8. Ndekwa, Alberto Gabriel & Kalugendo, Elizeus & Sood, Kiran & Grima, Simon, 2023. "An Analysis of Agribusiness Digitalisation Transformation of the Sub-Saharan African Countries Small-Scale Farmers' Production Distribution," Research on World Agricultural Economy, Nan Yang Academy of Sciences Pte Ltd (NASS), vol. 4(3), September.
    9. Wang, Tong & Jin, Hailong & Sieverding, Heidi & Kumar, Sandeep & Miao, Yuxin & Rao, Xudong & Obembe, Oladipo & Mirzakhani Nafchi, Ali & Redfearn, Daren & Cheye, Stephen, 2023. "Understanding farmer views of precision agriculture profitability in the U.S. Midwest," Ecological Economics, Elsevier, vol. 213(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madhu Khanna & Ruiqing Miao, 2022. "Inducing the adoption of emerging technologies for sustainable intensification of food and renewable energy production: insights from applied economics," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(1), pages 1-23, January.
    2. J Blasch & B van der Kroon & P van Beukering & R Munster & S Fabiani & P Nino & S Vanino, 2022. "Farmer preferences for adopting precision farming technologies: a case study from Italy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(1), pages 33-81.
    3. Kangogo, Daniel & Dentoni, Domenico & Bijman, Jos, 2021. "Adoption of climate‐smart agriculture among smallholder farmers: Does farmer entrepreneurship matter?," Land Use Policy, Elsevier, vol. 109(C).
    4. Madhu Khanna & Shady S. Atallah & Saurajyoti Kar & Bijay Sharma & Linghui Wu & Chengzheng Yu & Girish Chowdhary & Chinmay Soman & Kaiyu Guan, 2022. "Digital transformation for a sustainable agriculture in the United States: Opportunities and challenges," Agricultural Economics, International Association of Agricultural Economists, vol. 53(6), pages 924-937, November.
    5. Oksana Hrynevych & Miguel Blanco Canto & Mercedes Jiménez García, 2022. "Tendencies of Precision Agriculture in Ukraine: Disruptive Smart Farming Tools as Cooperation Drivers," Agriculture, MDPI, vol. 12(5), pages 1-15, May.
    6. Wang, Tong & Jin, Hailong & Sieverding, Heidi & Kumar, Sandeep & Miao, Yuxin & Rao, Xudong & Obembe, Oladipo & Mirzakhani Nafchi, Ali & Redfearn, Daren & Cheye, Stephen, 2023. "Understanding farmer views of precision agriculture profitability in the U.S. Midwest," Ecological Economics, Elsevier, vol. 213(C).
    7. Margherita Masi & Jorgelina Di Pasquale & Yari Vecchio & Fabian Capitanio, 2023. "Precision Farming: Barriers of Variable Rate Technology Adoption in Italy," Land, MDPI, vol. 12(5), pages 1-16, May.
    8. Scott M. Swinton, 2022. "Precision conservation: Linking set‐aside and working lands policy," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(3), pages 1158-1167, September.
    9. McFadden, Jonathan & Njuki, Eric & Griffin, Terry, 2023. "Precision Agriculture in the Digital Era: Recent Adoption on U.S. Farms," USDA Miscellaneous 333550, United States Department of Agriculture.
    10. Späti, Karin & Huber, Robert & Finger, Robert, 2021. "Benefits of Increasing Information Accuracy in Variable Rate Technologies," Ecological Economics, Elsevier, vol. 185(C).
    11. Vecchio, Yari & De Rosa, Marcello & Adinolfi, Felice & Bartoli, Luca & Masi, Margherita, 2020. "Adoption of precision farming tools: A context-related analysis," Land Use Policy, Elsevier, vol. 94(C).
    12. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    13. Kolady, Deepthi E. & Van Der Sluis, Evert, 2021. "Adoption Determinants of Precision Agriculture Technologies and Conservation Agriculture: Evidence from South Dakota," Western Economics Forum, Western Agricultural Economics Association, vol. 19(2), December.
    14. Dhoubhadel, Sunil P., 2020. "Precision Agriculture Technologies and Farm Profitability," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304229, Agricultural and Applied Economics Association.
    15. Margherita Masi & Marcello Rosa & Yari Vecchio & Luca Bartoli & Felice Adinolfi, 2022. "The long way to innovation adoption: insights from precision agriculture," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-17, December.
    16. Kimhi, Ayal & Rubin, Ofir D., 2006. "Assessing The Response Of Farm Households To Dairy Policy Reform In Israel," Discussion Papers 7134, Hebrew University of Jerusalem, Department of Agricultural Economics and Management.
    17. Ingram, Julie & Maye, Damian & Bailye, Clive & Barnes, Andrew & Bear, Christopher & Bell, Matthew & Cutress, David & Davies, Lynfa & de Boon, Auvikki & Dinnie, Liz & Gairdner, Julian & Hafferty, Caitl, 2022. "What are the priority research questions for digital agriculture?," Land Use Policy, Elsevier, vol. 114(C).
    18. Gackstetter, David & von Bloh, Malte & Hannus, Veronika & Meyer, Sebastian T. & Weisser, Wolfgang & Luksch, Claudia & Asseng, Senthold, 2023. "Autonomous field management – An enabler of sustainable future in agriculture," Agricultural Systems, Elsevier, vol. 206(C).
    19. Marc Baudry & Edouard Civel & Camille Tévenart, 2023. "Land allocation and the adoption of innovative practices in agriculture: a real option modelling of the underlying hidden costs," EconomiX Working Papers 2023-1, University of Paris Nanterre, EconomiX.
    20. Schnebelin, Éléonore, 2022. "Linking the diversity of ecologisation models to farmers' digital use profiles," Ecological Economics, Elsevier, vol. 196(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apecpp:v:43:y:2021:i:4:p:1221-1242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2040-5804 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.