IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v196y2022ics0921800922000842.html
   My bibliography  Save this article

Linking the diversity of ecologisation models to farmers' digital use profiles

Author

Listed:
  • Schnebelin, Éléonore

Abstract

Digitalisation is promoted by both private and public actors as a way of contributing to the ecologisation of agriculture. However, this idea remains controversial. The debate is all the more crucial, as different ecologisation models exist, and as agriculture is experiencing new levels of industrialisation. In the literature, use of digital technology in agriculture has mainly been approached from a linear perspective of adoption but is rarely linked to ecologisation. In this paper, we aim to define digital use profiles of farmers and explain how they relate to ecologisation models. We distinguish production and information technologies. Based on 98 interviews with crop farmers in Occitanie (France), we show that there is a diversity of digital profiles. Through a mixed-method, we relate these profiles to a set of variables representing ecological and economic transformation in agriculture. It highlights links between some digital profiles and the further industrialisation of agriculture intertwined with weak or symbolic ecologisation. However, some digital uses associate with new forms of ecologisation that are based on input substitution. Digital use does not appear to support stronger ecologisation of farming. This study highlights the risk of a single model of digitalisation that only promotes one type of ecologisation pathway.

Suggested Citation

  • Schnebelin, Éléonore, 2022. "Linking the diversity of ecologisation models to farmers' digital use profiles," Ecological Economics, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:ecolec:v:196:y:2022:i:c:s0921800922000842
    DOI: 10.1016/j.ecolecon.2022.107422
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800922000842
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2022.107422?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vanloqueren, Gaëtan & Baret, Philippe V., 2009. "How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations," Research Policy, Elsevier, vol. 38(6), pages 971-983, July.
    2. Lajoie-O'Malley, Alana & Bronson, Kelly & van der Burg, Simone & Klerkx, Laurens, 2020. "The future(s) of digital agriculture and sustainable food systems: An analysis of high-level policy documents," Ecosystem Services, Elsevier, vol. 45(C).
    3. Regina Birner & Thomas Daum & Carl Pray, 2021. "Who drives the digital revolution in agriculture? A review of supply‐side trends, players and challenges," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1260-1285, December.
    4. Lê, Sébastien & Josse, Julie & Husson, François, 2008. "FactoMineR: An R Package for Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i01).
    5. Geneviève Nguyen & Julien Brailly & François Purseigle, 2020. "Strategic outsourcing and precision agriculture: towards a silent reorganization of agricultural production in France ?," Post-Print hal-02942720, HAL.
    6. Leslie Moreiro, 2017. "Appropriation de technologies et développement durable : l’exemple de la viticulture de précision," Innovations, De Boeck Université, vol. 0(3), pages 97-122.
    7. Carbonell, Isabelle M., 2016. "The ethics of big data in big agriculture," Internet Policy Review: Journal on Internet Regulation, Alexander von Humboldt Institute for Internet and Society (HIIG), Berlin, vol. 5(1), pages 1-13.
    8. Jakku, E. & Thorburn, P.J., 2010. "A conceptual framework for guiding the participatory development of agricultural decision support systems," Agricultural Systems, Elsevier, vol. 103(9), pages 675-682, November.
    9. Konrad, Maria Theresia & Nielsen, Helle Ørsted & Pedersen, Anders Branth & Elofsson, Katarina, 2019. "Drivers of Farmers' Investments in Nutrient Abatement Technologies in Five Baltic Sea Countries," Ecological Economics, Elsevier, vol. 159(C), pages 91-100.
    10. Barnes, A.P. & Soto, I. & Eory, V. & Beck, B. & Balafoutis, A. & Sánchez, B. & Vangeyte, J. & Fountas, S. & van der Wal, T. & Gómez-Barbero, M., 2019. "Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers," Land Use Policy, Elsevier, vol. 80(C), pages 163-174.
    11. Véronique Lucas, 2021. "A “silent” agroecology: the significance of unrecognized sociotechnical changes made by French farmers," Review of Agricultural, Food and Environmental Studies, Springer, vol. 102(1), pages 1-23, March.
    12. Ingram, Julie & Maye, Damian & Bailye, Clive & Barnes, Andrew & Bear, Christopher & Bell, Matthew & Cutress, David & Davies, Lynfa & de Boon, Auvikki & Dinnie, Liz & Gairdner, Julian & Hafferty, Caitl, 2022. "What are the priority research questions for digital agriculture?," Land Use Policy, Elsevier, vol. 114(C).
    13. Steven A. Wolf & Frederick H. Buttel, 1996. "The Political Economy of Precision Farming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(5), pages 1269-1274.
    14. Lucas, Véronique, 2021. "A “silent” agroecology: the significance of unrecognized sociotechnical changes made by French farmers," Review of Agricultural, Food and Environmental Studies, Institut National de la Recherche Agronomique (INRA), vol. 102(1), March.
    15. Éléonore Schnebelin & Pierre P. Labarthe & Jean-Marc Touzard, 2021. "How digitalisation interacts with ecologisation? Perspectives from actors of the French Agricultural Innovation System," Post-Print hal-03319092, HAL.
    16. Jennifer Clapp & Sarah-Louise Ruder, 2020. "Precision Technologies for Agriculture: Digital Farming, Gene-EditedCrops, and the Politics of Sustainability," Global Environmental Politics, MIT Press, vol. 20(3), pages 49-69, August.
    17. Jan Douwe Van der Ploeg & Marjolein Visser, 2019. "The economic potential of agroecology: Empirical evidence from Europe," ULB Institutional Repository 2013/289295, ULB -- Universite Libre de Bruxelles.
    18. Athanasios Balafoutis & Bert Beck & Spyros Fountas & Jurgen Vangeyte & Tamme Van der Wal & Iria Soto & Manuel Gómez-Barbero & Andrew Barnes & Vera Eory, 2017. "Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics," Sustainability, MDPI, vol. 9(8), pages 1-28, July.
    19. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    20. Fielke, Simon & Taylor, Bruce & Jakku, Emma, 2020. "Digitalisation of agricultural knowledge and advice networks: A state-of-the-art review," Agricultural Systems, Elsevier, vol. 180(C).
    21. Frank, Alejandro G. & Mendes, Glauco H.S. & Ayala, Néstor F. & Ghezzi, Antonio, 2019. "Servitization and Industry 4.0 convergence in the digital transformation of product firms: A business model innovation perspective," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 341-351.
    22. Burton, Rob J.F. & Riley, Mark, 2018. "Traditional Ecological Knowledge from the internet? The case of hay meadows in Europe," Land Use Policy, Elsevier, vol. 70(C), pages 334-346.
    23. Pigford, Ashlee-Ann E. & Hickey, Gordon M. & Klerkx, Laurens, 2018. "Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions," Agricultural Systems, Elsevier, vol. 164(C), pages 116-121.
    24. Schimmelpfennig, David, 2016. "Farm Profits and Adoption of Precision Agriculture," Economic Research Report 249773, United States Department of Agriculture, Economic Research Service.
    25. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bellon-Maurel, Véronique & Lutton, Evelyne & Bisquert, Pierre & Brossard, Ludovic & Chambaron-Ginhac, Stéphanie & Labarthe, Pierre & Lagacherie, Philippe & Martignac, Francois & Molenat, Jérome & Pari, 2022. "Digital revolution for the agroecological transition of food systems: A responsible research and innovation perspective," Agricultural Systems, Elsevier, vol. 203(C).
    2. Margherita Masi & Marcello Rosa & Yari Vecchio & Luca Bartoli & Felice Adinolfi, 2022. "The long way to innovation adoption: insights from precision agriculture," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ingram, Julie & Maye, Damian & Bailye, Clive & Barnes, Andrew & Bear, Christopher & Bell, Matthew & Cutress, David & Davies, Lynfa & de Boon, Auvikki & Dinnie, Liz & Gairdner, Julian & Hafferty, Caitl, 2022. "What are the priority research questions for digital agriculture?," Land Use Policy, Elsevier, vol. 114(C).
    2. Bellon-Maurel, Véronique & Lutton, Evelyne & Bisquert, Pierre & Brossard, Ludovic & Chambaron-Ginhac, Stéphanie & Labarthe, Pierre & Lagacherie, Philippe & Martignac, Francois & Molenat, Jérome & Pari, 2022. "Digital revolution for the agroecological transition of food systems: A responsible research and innovation perspective," Agricultural Systems, Elsevier, vol. 203(C).
    3. Sarah Hackfort, 2021. "Patterns of Inequalities in Digital Agriculture: A Systematic Literature Review," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    4. Wolfert, Sjaak & Verdouw, Cor & van Wassenaer, Lan & Dolfsma, Wilfred & Klerkx, Laurens, 2023. "Digital innovation ecosystems in agri-food: design principles and organizational framework," Agricultural Systems, Elsevier, vol. 204(C).
    5. Hidalgo, Francisco & Quiñones-Ruiz, Xiomara F. & Birkenberg, Athena & Daum, Thomas & Bosch, Christine & Hirsch, Patrick & Birner, Regina, 2023. "Digitalization, sustainability, and coffee. Opportunities and challenges for agricultural development," Agricultural Systems, Elsevier, vol. 208(C).
    6. Kenny, Ursula & Regan, Áine & Hearne, Dave & O'Meara, Christine, 2021. "Empathising, defining and ideating with the farming community to develop a geotagged photo app for smart devices: A design thinking approach," Agricultural Systems, Elsevier, vol. 194(C).
    7. Jennifer Clapp & Sarah-Louise Ruder, 2020. "Precision Technologies for Agriculture: Digital Farming, Gene-EditedCrops, and the Politics of Sustainability," Global Environmental Politics, MIT Press, vol. 20(3), pages 49-69, August.
    8. Metta, Matteo & Ciliberti, Stefano & Obi, Chinedu & Bartolini, Fabio & Klerkx, Laurens & Brunori, Gianluca, 2022. "An integrated socio-cyber-physical system framework to assess responsible digitalisation in agriculture: A first application with Living Labs in Europe," Agricultural Systems, Elsevier, vol. 203(C).
    9. J Blasch & B van der Kroon & P van Beukering & R Munster & S Fabiani & P Nino & S Vanino, 2022. "Farmer preferences for adopting precision farming technologies: a case study from Italy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(1), pages 33-81.
    10. Kok, Kristiaan P.W. & Klerkx, Laurens, 2023. "Addressing the politics of mission-oriented agricultural innovation systems," Agricultural Systems, Elsevier, vol. 211(C).
    11. Galaz, Victor & Centeno, Miguel A. & Callahan, Peter W. & Causevic, Amar & Patterson, Thayer & Brass, Irina & Baum, Seth & Farber, Darryl & Fischer, Joern & Garcia, David & McPhearson, Timon & Jimenez, 2021. "Artificial intelligence, systemic risks, and sustainability," Technology in Society, Elsevier, vol. 67(C).
    12. Boulestreau, Yann & Peyras, Claire-Lise & Casagrande, Marion & Navarrete, Mireille, 2022. "Tracking down coupled innovations supporting agroecological vegetable crop protection to foster sustainability transition of agrifood systems," Agricultural Systems, Elsevier, vol. 196(C).
    13. David Christian Rose & Anna Barkemeyer & Auvikki Boon & Catherine Price & Dannielle Roche, 2023. "The old, the new, or the old made new? Everyday counter-narratives of the so-called fourth agricultural revolution," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 40(2), pages 423-439, June.
    14. Valeria Sodano, 2019. "Innovation Trajectories and Sustainability in the Food System," Sustainability, MDPI, vol. 11(5), pages 1-19, February.
    15. Späti, Karin & Huber, Robert & Finger, Robert, 2021. "Benefits of Increasing Information Accuracy in Variable Rate Technologies," Ecological Economics, Elsevier, vol. 185(C).
    16. Emily Duncan & Alesandros Glaros & Dennis Z. Ross & Eric Nost, 2021. "New but for whom? Discourses of innovation in precision agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 38(4), pages 1181-1199, December.
    17. Ayorinde Ogunyiola & Maaz Gardezi, 2022. "Restoring sense out of disorder? Farmers’ changing social identities under big data and algorithms," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(4), pages 1451-1464, December.
    18. Madhu Khanna, 2021. "Digital Transformation of the Agricultural Sector: Pathways, Drivers and Policy Implications," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1221-1242, December.
    19. Paulus, Michael & Pfaff, Sara Anna, 2022. "Factors Affecting the Diffusion of Digital Farming Towards More Resilient Farming Systems - Empirical Evidence from Baden-Württemberg," 62nd Annual Conference, Stuttgart, Germany, September 7-9, 2022 329597, German Association of Agricultural Economists (GEWISOLA).
    20. McGrath, Karen & Brown, Claire & Regan, Áine & Russell, Tomás, 2023. "Investigating narratives and trends in digital agriculture: A scoping study of social and behavioural science studies," Agricultural Systems, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:196:y:2022:i:c:s0921800922000842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.