IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej38-si1-argentiero.html
   My bibliography  Save this article

Comparing Renewable Energy Policies in EU-15, U.S. and China: A Bayesian DSGE Model

Author

Listed:
  • Amedeo Argentiero, Tarek Atalla, Simona Bigerna, Silvia Micheli, and Paolo Polinori

Abstract

The promotion of renewable energy sources (RES) by governments is one way of helping countries to meet their energy needs while lowering greenhouse gas emissions. In this paper, we examine the role of energy policy in RES promotion, based on a carbon tax and RES price subsidy, at a time of technological and demand shocks in the European Union (E.U.) 15 countries, the United States (U.S.) and China, focusing on the macroeconomic implications. Using a dynamic stochastic general equilibrium model for RES and fossil fuels, our results suggest that, in the presence of a total factor productivity shock in the fossil fuel sector, such an energy policy can also be a driving force for smoothing the reduction of RES in the energy market (and vice versa). Additionally, we show that the E.U.15 grouping has a comparative advantage in terms of reaching grid parity compared with the other countries we considered which are more fossil fuel dependent.

Suggested Citation

  • Amedeo Argentiero, Tarek Atalla, Simona Bigerna, Silvia Micheli, and Paolo Polinori, 2017. "Comparing Renewable Energy Policies in EU-15, U.S. and China: A Bayesian DSGE Model," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
  • Handle: RePEc:aen:journl:ej38-si1-argentiero
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=2905
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Niall Farrell, Mel T. Devine, William T. Lee, James P. Gleeson, and Sean Lyons, 2017. "Specifying An Efficient Renewable Energy Feed-in Tariff," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    3. Gawel, Erik & Strunz, Sebastian & Lehmann, Paul, 2014. "A public choice view on the climate and energy policy mix in the EU — How do the emissions trading scheme and support for renewable energies interact?," Energy Policy, Elsevier, vol. 64(C), pages 175-182.
    4. Pineda, Salvador & Bock, Andreas, 2016. "Renewable-based generation expansion under a green certificate market," Renewable Energy, Elsevier, vol. 91(C), pages 53-63.
    5. Frondel, Manuel & Ritter, Nolan & Schmidt, Christoph M. & Vance, Colin, 2010. "Economic impacts from the promotion of renewable energy technologies: The German experience," Energy Policy, Elsevier, vol. 38(8), pages 4048-4056, August.
    6. Stokes, Leah C., 2013. "The politics of renewable energy policies: The case of feed-in tariffs in Ontario, Canada," Energy Policy, Elsevier, vol. 56(C), pages 490-500.
    7. Adrienne M. Ohler, 2015. "Factors affecting the rise of renewable energy in the U.S.: Concern over environmental quality or rising unemployment?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    8. Li Dai & Patrick Minford & Peng Zhou, 2015. "A DSGE model of China," Applied Economics, Taylor & Francis Journals, vol. 47(59), pages 6438-6460, December.
    9. Fischer, Carolyn & Springborn, Michael, 2011. "Emissions targets and the real business cycle: Intensity targets versus caps or taxes," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 352-366.
    10. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    11. Garth Heutel, 2012. "How Should Environmental Policy Respond to Business Cycles? Optimal Policy under Persistent Productivity Shocks," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(2), pages 244-264, April.
    12. Narbel, Patrick A., 2014. "Rethinking how to support intermittent renewables," Discussion Papers 2014/17, Norwegian School of Economics, Department of Business and Management Science.
    13. Eirik S. Amundsen and Lars Bergman, 2012. "Green Certificates and Market Power on the Nordic Power Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    14. Del Negro, Marco & Schorfheide, Frank, 2008. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1191-1208, October.
    15. Spiros Papaefthimiou, Manolis Souliotis, and Kostas Andriosopoulos, 2016. "Grid parity of solar energy: imminent fact or future's fiction," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    16. Stockman, Alan C & Tesar, Linda L, 1995. "Tastes and Technology in a Two-Country Model of the Business Cycle: Explaining International Comovements," American Economic Review, American Economic Association, vol. 85(1), pages 168-185, March.
    17. Reyer Gerlagh & Bob van der Zwaan, 2006. "Options and Instruments for a Deep Cut in CO2 Emissions: Carbon Dioxide Capture or Renewables, Taxes or Subsidies?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 25-48.
    18. King, Robert G. & Rebelo, Sergio T., 1999. "Resuscitating real business cycles," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 14, pages 927-1007, Elsevier.
    19. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39, pages 137-137.
    20. Yin, Haitao & Powers, Nicholas, 2010. "Do state renewable portfolio standards promote in-state renewable generation[glottal stop]," Energy Policy, Elsevier, vol. 38(2), pages 1140-1149, February.
    21. Klessmann, Corinna, 2009. "The evolution of flexibility mechanisms for achieving European renewable energy targets 2020--ex-ante evaluation of the principle mechanisms," Energy Policy, Elsevier, vol. 37(11), pages 4966-4979, November.
    22. Konstantinos Angelopoulos & George Economides & Apostolis Philippopoulos, 2013. "First-and second-best allocations under economic and environmental uncertainty," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 20(3), pages 360-380, June.
    23. Narbel, Patrick A., 2014. "Rethinking how to support intermittent renewables," Energy, Elsevier, vol. 77(C), pages 414-421.
    24. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    25. Annicchiarico, Barbara & Di Dio, Fabio, 2015. "Environmental policy and macroeconomic dynamics in a new Keynesian model," Journal of Environmental Economics and Management, Elsevier, vol. 69(C), pages 1-21.
    26. Ernesto Garnier and Reinhard Madlener, 2016. "The Influence of Policy Regime Risks on Investments in Innovative Energy Technology," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    27. Moosavian, S.M. & Rahim, N.A. & Selvaraj, J. & Solangi, K.H., 2013. "Energy policy to promote photovoltaic generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 44-58.
    28. de la Hoz, Jordi & Martín, Helena & Miret, Jaume & Castilla, Miguel & Guzman, Ramon, 2016. "Evaluating the 2014 retroactive regulatory framework applied to the grid connected PV systems in Spain," Applied Energy, Elsevier, vol. 170(C), pages 329-344.
    29. Wang, Qiang & Chen, Xi & Jha, Awadhesh N. & Rogers, Howard, 2014. "Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1-28.
    30. Timothy J. Considine, 2000. "Cost Structures for Fossil Fuel-Fired Electric Power Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 83-104.
    31. Tahvonen, Olli & Salo, Seppo, 2001. "Economic growth and transitions between renewable and nonrenewable energy resources," European Economic Review, Elsevier, vol. 45(8), pages 1379-1398, August.
    32. Steffen Jenner, Gabriel Chan, Rolf Frankenberger, and Mathias Gabel, 2012. "What Drives States to Support Renewable Energy?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    33. Jenner, Steffen & Lamadrid, Alberto J., 2013. "Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States," Energy Policy, Elsevier, vol. 53(C), pages 442-453.
    34. Blanchard, Olivier Jean & Kahn, Charles M, 1980. "The Solution of Linear Difference Models under Rational Expectations," Econometrica, Econometric Society, vol. 48(5), pages 1305-1311, July.
    35. Haas, Reinhard & Resch, Gustav & Panzer, Christian & Busch, Sebastian & Ragwitz, Mario & Held, Anne, 2011. "Efficiency and effectiveness of promotion systems for electricity generation from renewable energy sources – Lessons from EU countries," Energy, Elsevier, vol. 36(4), pages 2186-2193.
    36. Millard, Stephen, 2011. "An estimated DSGE model of energy, costs and inflation in the United Kingdom," Bank of England working papers 432, Bank of England.
    37. World Bank, 2012. "World Development Indicators 2012," World Bank Publications - Books, The World Bank Group, number 6014, December.
    38. World Bank, 2016. "World Development Indicators 2016," World Bank Publications - Books, The World Bank Group, number 23969, December.
    39. Yihsu Chen & Chung-Li Tseng, 2011. "Inducing Clean Technology in the Electricity Sector: Tradable Permits or Carbon Tax Policies?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 169-174.
    40. Thure Traber & Claudia Kemfert, 2009. "Impacts of the German Support for Renewable Energy on Electricity Prices, Emissions, and Firms," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 155-178.
    41. Carolyn Fischer, 2010. "Renewable Portfolio Standards: When Do They Lower Energy Prices?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 101-120.
    42. Sungbae An & Heedon Kang, 2011. "Oil Shocks in a DSGE Model for the Korean Economy," NBER Chapters, in: Commodity Prices and Markets, pages 295-321, National Bureau of Economic Research, Inc.
    43. Lund, P.D., 2011. "Boosting new renewable technologies towards grid parity – Economic and policy aspects," Renewable Energy, Elsevier, vol. 36(11), pages 2776-2784.
    44. Tarek Atallah & Jorge Blazquez, 2015. "Quantifying the impact of coal on global economic growth and energy productivity in the early 21st century," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2015(2), pages 93-106.
    45. Takatoshi Ito & Andrew K. Rose, 2011. "Commodity Prices and Markets," NBER Books, National Bureau of Economic Research, Inc, number ito_09-1, March.
    46. Anthony D. Owen, 2004. "Environmental Externalities, Market Distortions and the Economics of Renewable Energy Technologies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 127-158.
    47. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    48. Wang, Qiang & Chen, Xi, 2015. "Energy policies for managing China’s carbon emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 470-479.
    49. Ito, Takatoshi & Rose, Andrew K. (ed.), 2011. "Commodity Prices and Markets," National Bureau of Economic Research Books, University of Chicago Press, number 9780226386898, December.
    50. Sun, Honghang & Zhi, Qiang & Wang, Yibo & Yao, Qiang & Su, Jun, 2014. "China’s solar photovoltaic industry development: The status quo, problems and approaches," Applied Energy, Elsevier, vol. 118(C), pages 221-230.
    51. Tomoyuki Sakamoto & Shunsuke Managi, 2016. "Optimal economic growth and energy policy: analysis of nonrenewable and renewable energy," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(1), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yugang He & Moongi Lee, 2022. "Macroeconomic Effects of Energy Price: New Insight from Korea?," Mathematics, MDPI, vol. 10(15), pages 1-14, July.
    2. Philip Alege & Queen-Esther Oye & Omobola Adu, 2019. "Renewable Energy, Shocks and the Growth Agenda: A Dynamic Stochastic General Equilibrium Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 160-167.
    3. Gianfreda, Angelica & Maranzano, Paolo & Parisio, Lucia & Pelagatti, Matteo, 2023. "Testing for integration and cointegration when time series are observed with noise," Economic Modelling, Elsevier, vol. 125(C).
    4. Francesco Busato & Bruno Chiarini & Gianluigi Cisco & Maria Ferrara, 2022. "Do people really care about global warming?," Economics and Business Letters, Oviedo University Press, vol. 11(1), pages 24-32.
    5. Zhang, Yanfang & Gao, Qi & Wei, Jinpeng & Shi, Xunpeng & Zhou, Dequn, 2023. "Can China's energy-consumption permit trading scheme achieve the “Porter” effect? Evidence from an estimated DSGE model," Energy Policy, Elsevier, vol. 180(C).
    6. Mutascu, Mihai & Horky, Florian & Strango, Cristina, 2023. "Good or bad? Digitalisation and green preferences," Energy Economics, Elsevier, vol. 121(C).
    7. Busato, Francesco & Chiarini, Bruno & Cisco, Gianluigi & Ferrara, Maria, 2021. "Greta Thunberg effect and Business Cycle Dynamics: A DSGE model," MPRA Paper 110141, University Library of Munich, Germany.
    8. Tu, Qiang & Betz, Regina & Mo, Jianlei & Fan, Ying & Liu, Yu, 2019. "Achieving grid parity of wind power in China – Present levelized cost of electricity and future evolution," Applied Energy, Elsevier, vol. 250(C), pages 1053-1064.
    9. Dongqing Sun & Fanzhi Wang & Nanxu Chen & Jing Chen, 2021. "The Impacts of Technology Shocks on Sustainable Development from the Perspective of Energy Structure—A DSGE Model Approach," Sustainability, MDPI, vol. 13(15), pages 1-20, August.
    10. Argentiero, Amedeo & Bollino, Carlo Andrea & Micheli, Silvia & Zopounidis, Constantin, 2018. "Renewable energy sources policies in a Bayesian DSGE model," Renewable Energy, Elsevier, vol. 120(C), pages 60-68.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Argentiero, Amedeo & Bollino, Carlo Andrea & Micheli, Silvia & Zopounidis, Constantin, 2018. "Renewable energy sources policies in a Bayesian DSGE model," Renewable Energy, Elsevier, vol. 120(C), pages 60-68.
    2. Anelí Bongers, 2022. "Energy mix, technological change, and the environment," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(3), pages 341-364, July.
    3. Francesco Busato & Bruno Chiarini & Gianluigi Cisco & Maria Ferrara, 2023. "Green preferences," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3211-3253, April.
    4. Barbara Annicchiarico & Susan Battles & Fabio Di Dio & Pierfrancesco Molina & Pietro Zoppoli, 2016. "GEEM: a policy model for assessing climate-energy reforms in Italy," Working Papers 3, Department of the Treasury, Ministry of the Economy and of Finance.
    5. Eric Jondeau & Grégory Levieuge & Jean-Guillaume Sahuc & Gauthier Vermandel, 2023. "Environmental Subsidies to Mitigate Net-Zero Transition Costs," Working papers 910, Banque de France.
    6. Busato, Francesco & Chiarini, Bruno & Cisco, Gianluigi & Ferrara, Maria, 2021. "Greta Thunberg effect and Business Cycle Dynamics: A DSGE model," MPRA Paper 110141, University Library of Munich, Germany.
    7. Annicchiarico, Barbara & Correani, Luca & Di Dio, Fabio, 2018. "Environmental policy and endogenous market structure," Resource and Energy Economics, Elsevier, vol. 52(C), pages 186-215.
    8. Eric Jondeau & Gregory Levieuge & Jean-Guillaume Sahuc & Gauthier Vermandel, 2022. "Environmental Subsidies to Mitigate Transition Risk," Swiss Finance Institute Research Paper Series 22-45, Swiss Finance Institute.
    9. Chan, Ying Tung & Zhao, Hong, 2023. "Optimal carbon tax rates in a dynamic stochastic general equilibrium model with a supply chain," Economic Modelling, Elsevier, vol. 119(C).
    10. Marina Albanese & Francesco Busato & Gianluigi Cisco, 2022. "The role of higher education institutions in sustainable development: a DSGE analysis," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 76(1), pages 119-130, January-M.
    11. Dissou, Yazid & Karnizova, Lilia, 2016. "Emissions cap or emissions tax? A multi-sector business cycle analysis," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 169-188.
    12. Francesca Diluiso & Barbara Annicchiarico & Matthias Kalkuhl & Jan C. Minx, 2020. "Climate Actions and Stranded Assets: The Role of Financial Regulation and Monetary Policy," CEIS Research Paper 501, Tor Vergata University, CEIS, revised 22 Jul 2020.
    13. Chan, Ying Tung & Zhao, Hong, 2019. "How do credit market frictions affect carbon cycles? an estimated DSGE model approach," MPRA Paper 106987, University Library of Munich, Germany, revised 05 Dec 2020.
    14. Barbara Annicchiarico & Fabio Di Dio, 2017. "GHG Emissions Control and Monetary Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 823-851, August.
    15. Blazquez, Jorge & Galeotti, Marzio & Manzano, Baltasar & Pierru, Axel & Pradhan, Shreekar, 2021. "Effects of Saudi Arabia’s economic reforms: Insights from a DSGE model," Economic Modelling, Elsevier, vol. 95(C), pages 145-169.
    16. Xiao, Bowen & Fan, Ying & Guo, Xiaodan, 2021. "Dynamic interactive effect and co-design of SO2 emission tax and CO2 emission trading scheme," Energy Policy, Elsevier, vol. 152(C).
    17. Donadelli, Michael & Grüning, Patrick & Jüppner, Marcus & Kizys, Renatas, 2021. "Global temperature, R&D expenditure, and growth," Energy Economics, Elsevier, vol. 104(C).
    18. Dück, Alexander & Le, Anh H., 2023. "Transition risk uncertainty and robust optimal monetary policy," IMFS Working Paper Series 187, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
    19. Diluiso, Francesca & Annicchiarico, Barbara & Kalkuhl, Matthias & Minx, Jan C., 2021. "Climate actions and macro-financial stability: The role of central banks," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    20. Ernst, Anne & Hinterlang, Natascha & Mahle, Alexander & Stähler, Nikolai, 2022. "Carbon pricing, border adjustment and climate clubs: An assessment with EMuSe," Discussion Papers 25/2022, Deutsche Bundesbank.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej38-si1-argentiero. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.