My bibliography
Save this item
The StoNED Age: The Departure Into a New Era of Efficiency Analysis? – A Monte Carlo Comparison of StoNED and the "Oldies" (SFA and DEA)
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cristina Polo & Julián Ramajo & Alejandro Ricci‐Risquete, 2021. "A stochastic semi‐non‐parametric analysis of regional efficiency in the European Union," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(1), pages 7-24, February.
- Jose Manuel Cordero & Cristina Polo & Javier Salinas-Jiménez, 2021. "Subjective Well-Being and Heterogeneous Contexts: A Cross-National Study Using Semi-Nonparametric Frontier Methods," Journal of Happiness Studies, Springer, vol. 22(2), pages 867-886, February.
- Nguyen, Trang T.T. & Prior, Diego & Van Hemmen, Stefan, 2020. "Stochastic semi-nonparametric frontier approach for tax administration efficiency measure: Evidence from a cross-country study," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 137-153.
- Elvira Silva & Pedro Macedo & Isabel Soares, 2019. "Maximum entropy: a stochastic frontier approach for electricity distribution regulation," Journal of Regulatory Economics, Springer, vol. 55(3), pages 237-257, June.
- Jose M. Cordero & Cristina Polo & Daniel Santín, 2020. "Assessment of new methods for incorporating contextual variables into efficiency measures: a Monte Carlo simulation," Operational Research, Springer, vol. 20(4), pages 2245-2265, December.
- Géraldine Henningsen & Arne Henningsen & Uwe Jensen, 2015.
"A Monte Carlo study on multiple output stochastic frontiers: a comparison of two approaches,"
Journal of Productivity Analysis, Springer, vol. 44(3), pages 309-320, December.
- Géraldine Henningsen & Arne Henningsen & Uwe Jensen, 2013. "A Monte Carlo Study on Multiple Output Stochastic Frontiers: Comparison of Two Approaches," IFRO Working Paper 2013/7, University of Copenhagen, Department of Food and Resource Economics.
- Mark A. Andor & David H. Bernstein & Stephan Sommer, 2021.
"Determining the efficiency of residential electricity consumption,"
Empirical Economics, Springer, vol. 60(6), pages 2897-2923, June.
- Andor, Mark Andreas & Bernstein, David H. & Sommer, Stephan, 2020. "Determining the efficiency of residential electricity consumption," Ruhr Economic Papers 870, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019.
"Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes,"
European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
- Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2018. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," Ruhr Economic Papers 770, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Mark Andor & Christopher F. Parmeter & Stephan Sommer, 2018. "Combining Uncertainty with Uncertainty to Get Certainty? Efficiency Analysis for Regulation Purposes," Working Papers 2018-02, University of Miami, Department of Economics.
- Zhi Li & Lu Lv & Zuo Zhang, 2022. "Research on the Characteristics and Influencing Factors of Chinese Urban Households’ Electricity Consumption Efficiency," Energies, MDPI, vol. 15(20), pages 1-15, October.
- Saastamoinen, Antti & Bjørndal, Endre & Bjørndal, Mette, 2017. "Specification of merger gains in the Norwegian electricity distribution industry," Energy Policy, Elsevier, vol. 102(C), pages 96-107.
- Ahn, Heinz & Clermont, Marcel & Langner, Julia, 2023. "Comparative performance analysis of frontier-based efficiency measurement methods – A Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 307(1), pages 294-312.
- José Luis Preciado Arreola & Daisuke Yagi & Andrew L. Johnson, 2020. "Insights from machine learning for evaluating production function estimators on manufacturing survey data," Journal of Productivity Analysis, Springer, vol. 53(2), pages 181-225, April.
- Otsuka, Akihiro, 2023. "Industrial electricity consumption efficiency and energy policy in Japan," Utilities Policy, Elsevier, vol. 81(C).
- Parmeter, Christopher F., 2021. "Is it MOLS or COLS?," Efficiency Series Papers 2021/04, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
- Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Xiao, Xing-Zhi & Tian, Zhen-Zhen & Yang, Xiao-Yuan & Wang, Jian-Lin, 2016. "Cost efficiency of electric grid utilities in China: A comparison of estimates from SFA–MLE, SFA–Bayes and StoNED–CNLS," Energy Economics, Elsevier, vol. 55(C), pages 272-283.
- Akihiro Otsuka, 2023. "Stochastic demand frontier analysis of residential electricity demands in Japan," Asia-Pacific Journal of Regional Science, Springer, vol. 7(1), pages 179-195, March.
- Laura Di Giorgio & Abraham D Flaxman & Mark W Moses & Nancy Fullman & Michael Hanlon & Ruben O Conner & Alexandra Wollum & Christopher J L Murray, 2016. "Efficiency of Health Care Production in Low-Resource Settings: A Monte-Carlo Simulation to Compare the Performance of Data Envelopment Analysis, Stochastic Distance Functions, and an Ensemble Model," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
- Benjamin Hampf, 2018. "Measuring inefficiency in the presence of bad outputs: Does the disposability assumption matter?," Empirical Economics, Springer, vol. 54(1), pages 101-127, February.
- Delnava, Haleh & Khosravi, Ali & El Haj Assad, Mamdouh, 2023. "Metafrontier frameworks for estimating solar power efficiency in the United States using stochastic nonparametric envelopment of data (StoNED)," Renewable Energy, Elsevier, vol. 213(C), pages 195-204.
- Isabel Narbón-Perpiñá & Maria Teresa Balaguer-Coll & Marko Petrović & Emili Tortosa-Ausina, 2020. "Which estimator to measure local governments’ cost efficiency? The case of Spanish municipalities," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 11(1), pages 51-82, March.
- Sheng Zhang & Meng Xu & Yifu Yang & Zeyu Song, 2021. "Technological Innovation, Production Efficiency, and Sustainable Development: A Case Study from Shenzhen in China," Sustainability, MDPI, vol. 13(19), pages 1-12, September.
- Alexander Arévalo S & Víctor Giménez G & Diego Prior J, 2022. "Análisis de eficiencia en educación: una aplicación del método StoNED," Revista Desarrollo y Sociedad, Universidad de los Andes,Facultad de Economía, CEDE, vol. 92(2), pages 45-91, October.
- Julia Schaefer & Marcel Clermont, 2018. "Stochastic non-smooth envelopment of data for multi-dimensional output," Journal of Productivity Analysis, Springer, vol. 50(3), pages 139-154, December.
- Diana L. Becerra-Peña & María Ximena Lemos Mejía, 2021. "La productividad del sector manufacturero: caso Colombia 2005-2016," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(4), pages 1-27, Octubre -.
- Sakouvogui Kekoura & Shaik Saleem & Doetkott Curt & Magel Rhonda, 2021. "Sensitivity analysis of stochastic frontier analysis models," Monte Carlo Methods and Applications, De Gruyter, vol. 27(1), pages 71-90, March.
- De la Cruz, Marco & Mergoni, Anna, 2024. "Assessing the performance of Peruvian education system from a governance perspective," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
- Zaiwu Gong & Xiaoqing Chen, 2017. "Analysis of Interval Data Envelopment Efficiency Model Considering Different Distribution Characteristics—Based on Environmental Performance Evaluation of the Manufacturing Industry," Sustainability, MDPI, vol. 9(12), pages 1-25, November.
- Maria Nieswand & Stefan Seifert, 2016. "Operational Conditions in Regulatory Benchmarking Models: A Monte Carlo Analysis," Discussion Papers of DIW Berlin 1585, DIW Berlin, German Institute for Economic Research.
- Lin, Sheng-Wei & Lu, Wen-Min, 2024. "A comparison of chance-constrained data envelopment analysis, stochastic nonparametric envelopment of data and bootstrap method: A case study of cultural regeneration performance of cities," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1179-1191.
- Stefan Seifert, 2014. "Effizienzanalysemethoden in der Regulierung deutscher Elektrizitäts- und Gasversorgungsunternehmen," DIW Roundup: Politik im Fokus 40, DIW Berlin, German Institute for Economic Research.
- Mark Andor & Christopher Parmeter, 2017.
"Pseudolikelihood estimation of the stochastic frontier model,"
Applied Economics, Taylor & Francis Journals, vol. 49(55), pages 5651-5661, November.
- Andor, Mark & Parmeter, Christopher, 2017. "Pseudolikelihood estimation of the stochastic frontier model," Ruhr Economic Papers 693, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Nieswand, Maria & Seifert, Stefan, 2018. "Environmental factors in frontier estimation – A Monte Carlo analysis," European Journal of Operational Research, Elsevier, vol. 265(1), pages 133-148.
- Yujing Liu & Dongxiao Niu, 2021. "Coupling and Coordination Analysis of Thermal Power Carbon Emission Efficiency under the Background of Clean Energy Substitution," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
- Heinz Ahn & Marcel Clermont & Julia Langner, 2022. "The impact of selected input and output factors on measuring research efficiency of university research fields: insights from a purpose-, field-, and method-specific perspective," Journal of Business Economics, Springer, vol. 92(8), pages 1303-1335, October.
- Saastamoinen, Antti & Bjørndal, Endre & Bjørndal, Mette, 2016. "Specification of merger gains in the Norwegian electricity distribution industry," Discussion Papers 2016/7, Norwegian School of Economics, Department of Business and Management Science.
- Keshvari, Abolfazl, 2017. "A penalized method for multivariate concave least squares with application to productivity analysis," European Journal of Operational Research, Elsevier, vol. 257(3), pages 1016-1029.