IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i23p13221-d690889.html
   My bibliography  Save this article

Coupling and Coordination Analysis of Thermal Power Carbon Emission Efficiency under the Background of Clean Energy Substitution

Author

Listed:
  • Yujing Liu

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Dongxiao Niu

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

Abstract

With the proposed goals of reaching its “carbon peak” by 2030 and becoming “carbon neutral” by 2060, China will comprehensively build a diversified, efficient and clean energy system. The differences in China’s resource endowments have made the development of carbon emission reduction in the thermal power industry uncoordinated in various regions. Therefore, it is necessary to optimize the method for measuring thermal power carbon emission efficiency and determine the impact of regional development imbalances on the carbon emission efficiency of thermal power. For this article, we used the stochastic frontier analysis method and selected a variety of influencing factors as technical inefficiency items. After that, we measured the thermal power carbon emission efficiency in 30 provinces and municipalities (autonomous regions) in China in the past 10 years, and it was found that the efficiency was increasing yearly and showed obvious spatial differences. The impact of the clean energy substitution effect on the thermal power carbon emission efficiency cannot be ignored. After performing a coupled and coordinated analysis on the efficiency of thermal carbon emission in various regions and its influencing factors, the three indicators of power consumption intensity, urbanization level and clean energy substitution effect were selected. The weight of the indicator subsystem was determined in view of the estimation of the technical inefficiency. The results of the coupling and coordination analysis show that the degree of coupling and coordination of thermal power carbon emission efficiency is increasing yearly and presents a distribution of “high in the eastern region and low in the western region”. Therefore, all provinces need to vigorously carry out clean replacement work to enhance the coordinated development of carbon emission reduction in the thermal power industry and the level of regional economic development.

Suggested Citation

  • Yujing Liu & Dongxiao Niu, 2021. "Coupling and Coordination Analysis of Thermal Power Carbon Emission Efficiency under the Background of Clean Energy Substitution," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13221-:d:690889
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/23/13221/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/23/13221/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daeho Lee & Kyunam Kim & Chung Choe, 2017. "An analysis of the impact of unionization on efficiency: evidence from a meta-frontier analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 24(8), pages 575-578, May.
    2. Shi Wang & Hua Wang & Li Zhang & Jun Dang, 2019. "Provincial Carbon Emissions Efficiency and Its Influencing Factors in China," Sustainability, MDPI, vol. 11(8), pages 1-21, April.
    3. Jin Zhu & Huaping Sun & Dequn Zhou & Lin Peng & Chuanwang Sun, 2020. "Carbon emission efficiency of thermal power in different regions of China and spatial correlations," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1221-1242, October.
    4. Chunhua Chen & Jianwei Ren & Lijun Tang & Haohua Liu, 2020. "Additive integer-valued data envelopment analysis with missing data: A multi-criteria evaluation approach," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-20, June.
    5. Duan, Na & Guo, Jun-Peng & Xie, Bai-Chen, 2016. "Is there a difference between the energy and CO2 emission performance for China’s thermal power industry? A bootstrapped directional distance function approach," Applied Energy, Elsevier, vol. 162(C), pages 1552-1563.
    6. Yamaji, Kenji & Matsuhashi, Ryuji & Nagata, Yutaka & Kaya, Yoichi, 1993. "A study on economic measures for CO2 reduction in Japan," Energy Policy, Elsevier, vol. 21(2), pages 123-132, February.
    7. Mark Andor & Frederik Hesse, 2014. "The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA)," Journal of Productivity Analysis, Springer, vol. 41(1), pages 85-109, February.
    8. Liu, Liwei & Zong, Haijing & Zhao, Erdong & Chen, Chuxiang & Wang, Jianzhou, 2014. "Can China realize its carbon emission reduction goal in 2020: From the perspective of thermal power development," Applied Energy, Elsevier, vol. 124(C), pages 199-212.
    9. Wang, Keying & Wu, Meng & Sun, Yongping & Shi, Xunpeng & Sun, Ao & Zhang, Ping, 2019. "Resource abundance, industrial structure, and regional carbon emissions efficiency in China," Resources Policy, Elsevier, vol. 60(C), pages 203-214.
    10. Dariush Khezrimotlagh & Yao Chen, 2018. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 217-234, Springer.
    11. Wanke, Peter & Tsionas, Mike G. & Chen, Zhongfei & Moreira Antunes, Jorge Junio, 2020. "Dynamic network DEA and SFA models for accounting and financial indicators with an analysis of super-efficiency in stochastic frontiers: An efficiency comparison in OECD banking," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 456-468.
    12. Jingdong Zhong, 2019. "Biased Technical Change, Factor Substitution, and Carbon Emissions Efficiency in China," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
    13. Yuhong Wang & Xin Yao & Pengfei Yuan, 2015. "Strategic Adjustment of China’s Power Generation Capacity Structure Under the Constraint of Carbon Emission," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 421-435, October.
    14. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    15. Ling Wang & Zhongchang Chen & Dalai Ma & Pei Zhao, 2013. "Measuring Carbon Emissions Performance in 123 Countries: Application of Minimum Distance to the Strong Efficiency Frontier Analysis," Sustainability, MDPI, vol. 5(12), pages 1-14, December.
    16. Pai Wang & Mengna Qi & Yajia Liang & Xuebing Ling & Yan Song, 2019. "Examining the Relationship between Environmentally Friendly Land Use and Rural Revitalization Using a Coupling Analysis: A Case Study of Hainan Province, China," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
    17. Sun, J. W., 2005. "The decrease of CO2 emission intensity is decarbonization at national and global levels," Energy Policy, Elsevier, vol. 33(8), pages 975-978, May.
    18. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    19. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    20. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    21. Jianxue Chai & Lihui Zhang & Meng Yang & Qingyun Nie & Lei Nie, 2020. "Investigation on the Coupling Coordination Relationship between Electric Power Green Development and Ecological Civilization Construction in China: A Case Study of Beijing," Sustainability, MDPI, vol. 12(21), pages 1-29, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minyoung Yang & Jinsoo Kim, 2022. "A Critical Review of the Definition and Estimation of Carbon Efficiency," Sustainability, MDPI, vol. 14(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xian’En Wang & Shimeng Wang & Xipan Wang & Wenbo Li & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "The Assessment of Carbon Performance under the Region-Sector Perspective based on the Nonparametric Estimation: A Case Study of the Northern Province in China," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    2. Juanjuan Tian & Xiaoqian Song & Jinsuo Zhang, 2022. "Spatial-Temporal Pattern and Driving Factors of Carbon Efficiency in China: Evidence from Panel Data of Urban Governance," Energies, MDPI, vol. 15(7), pages 1-24, March.
    3. Liangen Zeng & Haiyan Lu & Yenping Liu & Yang Zhou & Haoyu Hu, 2019. "Analysis of Regional Differences and Influencing Factors on China’s Carbon Emission Efficiency in 2005–2015," Energies, MDPI, vol. 12(16), pages 1-21, August.
    4. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    5. Ahn, Heinz & Clermont, Marcel & Langner, Julia, 2023. "Comparative performance analysis of frontier-based efficiency measurement methods – A Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 307(1), pages 294-312.
    6. Otsuka, Akihiro, 2023. "Industrial electricity consumption efficiency and energy policy in Japan," Utilities Policy, Elsevier, vol. 81(C).
    7. Isabel Narbón-Perpiñá & Maria Teresa Balaguer-Coll & Marko Petrović & Emili Tortosa-Ausina, 2020. "Which estimator to measure local governments’ cost efficiency? The case of Spanish municipalities," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 11(1), pages 51-82, March.
    8. Julia Schaefer & Marcel Clermont, 2018. "Stochastic non-smooth envelopment of data for multi-dimensional output," Journal of Productivity Analysis, Springer, vol. 50(3), pages 139-154, December.
    9. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    10. Vaninsky, Alexander, 2010. "Prospective national and regional environmental performance: Boundary estimations using a combined data envelopment – stochastic frontier analysis approach," Energy, Elsevier, vol. 35(9), pages 3657-3665.
    11. Mark Andor & Christopher Parmeter, 2017. "Pseudolikelihood estimation of the stochastic frontier model," Applied Economics, Taylor & Francis Journals, vol. 49(55), pages 5651-5661, November.
    12. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    13. Cristina Polo & Julián Ramajo & Alejandro Ricci‐Risquete, 2021. "A stochastic semi‐non‐parametric analysis of regional efficiency in the European Union," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(1), pages 7-24, February.
    14. Sakouvogui Kekoura & Shaik Saleem & Doetkott Curt & Magel Rhonda, 2021. "Sensitivity analysis of stochastic frontier analysis models," Monte Carlo Methods and Applications, De Gruyter, vol. 27(1), pages 71-90, March.
    15. Kassoum Ayouba, 2023. "Spatial dependence in production frontier models," Journal of Productivity Analysis, Springer, vol. 60(1), pages 21-36, August.
    16. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    17. Lijie Wei & Zhibao Wang, 2022. "Differentiation Analysis on Carbon Emission Efficiency and Its Factors at Different Industrialization Stages: Evidence from Mainland China," IJERPH, MDPI, vol. 19(24), pages 1-14, December.
    18. Xuetong Wang & Wenyong Lai & Xiangnan Song & Chen Lu, 2018. "Implementation Efficiency of Corporate Social Responsibility in the Construction Industry: A China Study," IJERPH, MDPI, vol. 15(9), pages 1-21, September.
    19. Mark A. Andor & David H. Bernstein & Stephan Sommer, 2021. "Determining the efficiency of residential electricity consumption," Empirical Economics, Springer, vol. 60(6), pages 2897-2923, June.
    20. Delnava, Haleh & Khosravi, Ali & El Haj Assad, Mamdouh, 2023. "Metafrontier frameworks for estimating solar power efficiency in the United States using stochastic nonparametric envelopment of data (StoNED)," Renewable Energy, Elsevier, vol. 213(C), pages 195-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13221-:d:690889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.