IDEAS home Printed from https://ideas.repec.org/r/taf/apmtfi/v19y2012i1p59-95.html
   My bibliography  Save this item

The Implied Market Price of Weather Risk

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Fred Espen Benth, 2021. "Pricing of Commodity and Energy Derivatives for Polynomial Processes," Mathematics, MDPI, vol. 9(2), pages 1-30, January.
  2. Ahmet Göncü, 2013. "Comparison of temperature models using heating and cooling degree days futures," Journal of Risk Finance, Emerald Group Publishing, vol. 14(2), pages 159-178, February.
  3. Rui Zhou & Johnny Siu-Hang Li & Jeffrey Pai, 2019. "Pricing temperature derivatives with a filtered historical simulation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1462-1484, October.
  4. Benth, Fred Espen & Koekebakker, Steen, 2015. "Pricing of forwards and other derivatives in cointegrated commodity markets," Energy Economics, Elsevier, vol. 52(PA), pages 104-117.
  5. Fred Benth & Wolfgang Karl Härdle & Brenda López Cabrera, 2009. "Pricing of Asian temperature risk," SFB 649 Discussion Papers SFB649DP2009-046, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  6. A. Alexandridis & A. Zapranis, 2013. "Wind Derivatives: Modeling and Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 299-326, March.
  7. Awdesch Melzer & Wolfgang K. Härdle & Brenda López Cabrera, 2017. "Pricing Green Financial Products," SFB 649 Discussion Papers SFB649DP2017-020, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  8. Dorfleitner, Gregor & Wimmer, Maximilian, 2010. "The pricing of temperature futures at the Chicago Mercantile Exchange," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1360-1370, June.
  9. Brenda López Cabrera & Martin Odening & Matthias Ritter, 2013. "Pricing Rainfall Derivatives at the CME," SFB 649 Discussion Papers SFB649DP2013-005, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  10. Ahčan, Aleš, 2012. "Statistical analysis of model risk concerning temperature residuals and its impact on pricing weather derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 131-138.
  11. Groll, Andreas & López-Cabrera, Brenda & Meyer-Brandis, Thilo, 2016. "A consistent two-factor model for pricing temperature derivatives," Energy Economics, Elsevier, vol. 55(C), pages 112-126.
  12. Evarest Emmanuel & Berntsson Fredrik & Singull Martin & Yang Xiangfeng, 2018. "Weather derivatives pricing using regime switching model," Monte Carlo Methods and Applications, De Gruyter, vol. 24(1), pages 13-27, March.
  13. Wolfgang Karl Härdle & Brenda López Cabrera & Awdesch Melzer, 2021. "Pricing wind power futures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1083-1102, August.
  14. Karl Härdle, Wolfgang & López-Cabrera, Brenda & Teng, Huei-Wen, 2015. "State price densities implied from weather derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 106-125.
  15. Wolfgang Karl Härdle & Brenda López Cabrera & Ostap Okhrin & Weining Wang, 2016. "Localizing Temperature Risk," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1491-1508, October.
  16. Wolfgang Karl Hardle and Maria Osipenko, 2012. "Spatial Risk Premium on Weather Derivatives and Hedging Weather Exposure in Electricity," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
  17. López Cabrera, Brenda & Odening, Martin & Ritter, Matthias, 2013. "Pricing rainfall futures at the CME," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4286-4298.
  18. Kanamura, Takashi, 2019. "Volumetric Risk Hedging Strategies and Basis Risk Premium for Solar Power," MPRA Paper 92009, University Library of Munich, Germany.
  19. Makkonen, Adam & Vallström, Daniel & Uddin, Gazi Salah & Rahman, Md Lutfur & Haddad, Michel Ferreira Cardia, 2021. "The effect of temperature anomaly and macroeconomic fundamentals on agricultural commodity futures returns," Energy Economics, Elsevier, vol. 100(C).
  20. Jr‐Wei Huang & Sharon S. Yang & Chuang‐Chang Chang, 2018. "Modeling temperature behaviors: Application to weather derivative valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1152-1175, September.
  21. Wolfgang Karl Härdle & Brenda López-Cabrera & Matthias Ritter, 2012. "Forecast based Pricing of Weather Derivatives," SFB 649 Discussion Papers SFB649DP2012-027, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  22. Fred Espen Benth & Anca Pircalabu, 2018. "A non-Gaussian Ornstein–Uhlenbeck model for pricing wind power futures," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(1), pages 36-65, January.
  23. Benth, Fred Espen & Taib, Che Mohd Imran Che, 2013. "On the speed towards the mean for continuous time autoregressive moving average processes with applications to energy markets," Energy Economics, Elsevier, vol. 40(C), pages 259-268.
  24. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Modeling and Pricing in Financial Markets for Weather Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8457, January.
  25. Šaltytė Benth, Jūratė & Benth, Fred Espen, 2012. "A critical view on temperature modelling for application in weather derivatives markets," Energy Economics, Elsevier, vol. 34(2), pages 592-602.
  26. Christensen, Troels Sønderby & Pircalabu, Anca & Høg, Esben, 2019. "A seasonal copula mixture for hedging the clean spark spread with wind power futures," Energy Economics, Elsevier, vol. 78(C), pages 64-80.
  27. Fred Espen Benth & Paul Kruhner, 2014. "Representation of infinite dimensional forward price models in commodity markets," Papers 1403.4111, arXiv.org.
  28. Larsson, Karl & Green, Rikard & Benth, Fred Espen, 2023. "A stochastic time-series model for solar irradiation," Energy Economics, Elsevier, vol. 117(C).
  29. Eirini Konstantinidi & Gkaren Papazian & George Skiadopoulos, 2015. "Modeling the Dynamics of Temperature with a View to Weather Derivatives," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 17, pages 511-544, World Scientific Publishing Co. Pte. Ltd..
  30. Ole E. Barndorff-Nielsen & Fred Espen Benth & Almut E. D. Veraart, 2013. "Modelling energy spot prices by volatility modulated L\'{e}vy-driven Volterra processes," Papers 1307.6332, arXiv.org.
  31. Joanna Janczura, 2014. "Pricing electricity derivatives within a Markov regime-switching model: a risk premium approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(1), pages 1-30, February.
  32. Maria Grith & Wolfgang K. Härdle & Alois Kneip & Heiko Wagner, 2016. "Functional Principal Component Analysis for Derivatives of Multivariate Curves," SFB 649 Discussion Papers SFB649DP2016-033, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  33. Matthias Ritter & Oliver Mußhoff & Martin Odening, 2010. "Meteorological forecasts and the pricing of weather derivatives," SFB 649 Discussion Papers SFB649DP2010-043, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  34. L. Kermiche & N. Vuillermet, 2016. "Weather derivatives structuring and pricing: a sustainable agricultural approach in Africa," Applied Economics, Taylor & Francis Journals, vol. 48(2), pages 165-177, January.
  35. Ragnhild Noven & Almut Veraart & Axel Gandy, 2015. "A Lévy-driven rainfall model with applications to futures pricing," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(4), pages 403-432, October.
  36. Mengmeng Guo & Lhan Zhou & Jianhua Z. Huang & Wolfgang Karl Härdle, 2013. "Functional Data Analysis of Generalized Quantile Regressions," SFB 649 Discussion Papers SFB649DP2013-001, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.