IDEAS home Printed from https://ideas.repec.org/r/plo/pone00/0211402.html

Financial time series forecasting using twin support vector regression

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Li, Jingmiao & Wang, Jun, 2020. "Forcasting of energy futures market and synchronization based on stochastic gated recurrent unit model," Energy, Elsevier, vol. 213(C).
  2. Ragosebo Kgaugelo Modise & Khumbulani Mpofu & Olukorede Tijani Adenuga, 2021. "Energy and Carbon Emission Efficiency Prediction: Applications in Future Transport Manufacturing," Energies, MDPI, vol. 14(24), pages 1-15, December.
  3. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
  4. Seyed Mehrzad Asaad Sajadi & Pouya Khodaee & Ehsan Hajizadeh & Sabri Farhadi & Sohaib Dastgoshade & Bo Du, 2022. "Deep Learning-Based Methods for Forecasting Brent Crude Oil Return Considering COVID-19 Pandemic Effect," Energies, MDPI, vol. 15(21), pages 1-23, October.
  5. Xiaodong Zhang & Suhui Liu & Xin Zheng, 2021. "Stock Price Movement Prediction Based on a Deep Factorization Machine and the Attention Mechanism," Mathematics, MDPI, vol. 9(8), pages 1-21, April.
  6. Zhicheng Xiao & Lijuan Yu & Huajun Zhang & Xuetao Zhang & Yixin Su, 2023. "HVAC Load Forecasting Based on the CEEMDAN-Conv1D-BiLSTM-AM Model," Mathematics, MDPI, vol. 11(22), pages 1-24, November.
  7. Olcay Ozupek & Reyat Yilmaz & Bita Ghasemkhani & Derya Birant & Recep Alp Kut, 2024. "A Novel Hybrid Model (EMD-TI-LSTM) for Enhanced Financial Forecasting with Machine Learning," Mathematics, MDPI, vol. 12(17), pages 1-36, September.
  8. Sumit Saroha & Marta Zurek-Mortka & Jerzy Ryszard Szymanski & Vineet Shekher & Pardeep Singla, 2021. "Forecasting of Market Clearing Volume Using Wavelet Packet-Based Neural Networks with Tracking Signals," Energies, MDPI, vol. 14(19), pages 1-21, September.
  9. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
  10. M. Tanveer & T. Rajani & R. Rastogi & Y. H. Shao & M. A. Ganaie, 2024. "Comprehensive review on twin support vector machines," Annals of Operations Research, Springer, vol. 339(3), pages 1223-1268, August.
  11. Xiangzhou Chen & Zhi Long, 2023. "E-Commerce Enterprises Financial Risk Prediction Based on FA-PSO-LSTM Neural Network Deep Learning Model," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
  12. Meira, Erick & Cyrino Oliveira, Fernando Luiz & Jeon, Jooyoung, 2021. "Treating and Pruning: New approaches to forecasting model selection and combination using prediction intervals," International Journal of Forecasting, Elsevier, vol. 37(2), pages 547-568.
  13. Wen-Jie Liu & Yu-Ting Bai & Xue-Bo Jin & Ting-Li Su & Jian-Lei Kong, 2022. "Adaptive Broad Echo State Network for Nonstationary Time Series Forecasting," Mathematics, MDPI, vol. 10(17), pages 1-21, September.
  14. Maosheng Li & Chen Zhang, 2024. "An Urban Metro Section Flow Forecasting Method Combining Time Series Decomposition and a Generative Adversarial Network," Sustainability, MDPI, vol. 16(2), pages 1-19, January.
  15. Gür Ali, Özden & Gürlek, Ragıp, 2020. "Automatic Interpretable Retail forecasting with promotional scenarios," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1389-1406.
  16. Yang, Kailing & Zhang, Xi & Luo, Haojia & Hou, Xianping & Lin, Yu & Wu, Jingyu & Yu, Liang, 2024. "Predicting energy prices based on a novel hybrid machine learning: Comprehensive study of multi-step price forecasting," Energy, Elsevier, vol. 298(C).
  17. Xie, Yiwei & Hu, Pingfang & Zhu, Na & Lei, Fei & Xing, Lu & Xu, Linghong & Sun, Qiming, 2020. "A hybrid short-term load forecasting model and its application in ground source heat pump with cooling storage system," Renewable Energy, Elsevier, vol. 161(C), pages 1244-1259.
  18. Xuliang Tang & Heng Wan & Weiwen Wang & Mengxu Gu & Linfeng Wang & Linfeng Gan, 2023. "Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
  19. Yun Chen & Chengwei Liang & Dengcheng Liu & Qingren Niu & Xinke Miao & Guangyu Dong & Liguang Li & Shanbin Liao & Xiaoci Ni & Xiaobo Huang, 2022. "Embedding-Graph-Neural-Network for Transient NOx Emissions Prediction," Energies, MDPI, vol. 16(1), pages 1-20, December.
  20. Kaijian He & Qian Yang & Lei Ji & Jingcheng Pan & Yingchao Zou, 2023. "Financial Time Series Forecasting with the Deep Learning Ensemble Model," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
  21. Zakaria Boulanouar & Ghassane Benrhmach & Rihab Grassa & Sonia Abdennadher & Mariam Aldhaheri, 2024. "Exploring the predictive power of artificial neural networks in linking global Islamic indices with a local Islamic index," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
  22. Zefan Dong & Yonghui Zhou, 2024. "A Novel Hybrid Model for Financial Forecasting Based on CEEMDAN-SE and ARIMA-CNN-LSTM," Mathematics, MDPI, vol. 12(16), pages 1-16, August.
  23. Viviane Naimy & Tatiana Abou Chedid & Omar Abou Saleh & Nicolas Bitar, 2025. "Redefining volatility forecasting in the aerospace and defense sector: application of CEEMDAN-GARCH models," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 12(1), pages 1-16, December.
  24. Athanasopoulos, George & Kourentzes, Nikolaos, 2023. "On the evaluation of hierarchical forecasts," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1502-1511.
  25. Do, Linh Phuong Catherine & Lyócsa, Štefan & Molnár, Peter, 2021. "Residual electricity demand: An empirical investigation," Applied Energy, Elsevier, vol. 283(C).
  26. Lu, Hongfang & Ma, Xin & Huang, Kun & Azimi, Mohammadamin, 2020. "Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
  27. Dongsu Kim & Yongjun Lee & Kyungil Chin & Pedro J. Mago & Heejin Cho & Jian Zhang, 2023. "Implementation of a Long Short-Term Memory Transfer Learning (LSTM-TL)-Based Data-Driven Model for Building Energy Demand Forecasting," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
  28. Yoonjae Noh & Jong-Min Kim & Soongoo Hong & Sangjin Kim, 2023. "Deep Learning Model for Multivariate High-Frequency Time-Series Data: Financial Market Index Prediction," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
  29. Joma Aldrini & Ines Chihi & Lilia Sidhom, 2024. "Fault diagnosis and self-healing for smart manufacturing: a review," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2441-2473, August.
  30. Jasleen Kaur & Khushdeep Dharni, 2022. "Application and performance of data mining techniques in stock market: A review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(4), pages 219-241, October.
  31. László Vancsura & Tibor Tatay & Tibor Bareith, 2025. "Navigating AI-Driven Financial Forecasting: A Systematic Review of Current Status and Critical Research Gaps," Forecasting, MDPI, vol. 7(3), pages 1-49, July.
  32. Lin, Yu & Lu, Qin & Tan, Bin & Yu, Yuanyuan, 2022. "Forecasting energy prices using a novel hybrid model with variational mode decomposition," Energy, Elsevier, vol. 246(C).
  33. Zhiyuan Pei & Jianqi Yan & Jin Yan & Bailing Yang & Xin Liu, 2025. "Multi-Scale TsMixer: A Novel Time-Series Architecture for Predicting A-Share Stock Index Futures," Mathematics, MDPI, vol. 13(9), pages 1-19, April.
  34. Zhou, Feite & Huang, Zhehao & Zhang, Changhong, 2022. "Carbon price forecasting based on CEEMDAN and LSTM," Applied Energy, Elsevier, vol. 311(C).
  35. Cheng Zhao & Ping Hu & Xiaohui Liu & Xuefeng Lan & Haiming Zhang, 2023. "Stock Market Analysis Using Time Series Relational Models for Stock Price Prediction," Mathematics, MDPI, vol. 11(5), pages 1-13, February.
  36. Sanghyuk Yoo & Sangyong Jeon & Seunghwan Jeong & Heesoo Lee & Hosun Ryou & Taehyun Park & Yeonji Choi & Kyongjoo Oh, 2021. "Prediction of the Change Points in Stock Markets Using DAE-LSTM," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
  37. Seungho Baek & Kwan Yong Lee & Merih Uctum & Seok Hee Oh, 2020. "Robo-Advisors: Machine Learning in Trend-Following ETF Investments," Sustainability, MDPI, vol. 12(16), pages 1-15, August.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.