IDEAS home Printed from https://ideas.repec.org/r/nav/ecupna/1301.html
   My bibliography  Save this item

Sharing the costs of cleaning a river: the Upstream Responsibility rule

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yuzhi Yang & Erik Ansink & Jens Gudmundsson, 2023. "How to Pollute a River If You Must," Tinbergen Institute Discussion Papers 23-036/VIII, Tinbergen Institute.
  2. René van den Brink & Simin He & Jia-Ping Huang, 2015. "Polluted River Problems and Games with a Permission Structure," Tinbergen Institute Discussion Papers 15-108/II, Tinbergen Institute.
  3. Rosa van den Ende & Antoine Mandel & Agnieszka Rusinowska, 2023. "Network-based allocation of responsibility for GHG emissions," Post-Print halshs-04188365, HAL.
  4. G. Bergantiños & J. Vidal-Puga, 2020. "One-way and two-way cost allocation in hub network problems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(1), pages 199-234, March.
  5. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, March.
  6. Rene van den Brink & Saish Nevrekar, 2020. "Peaceful Agreements to Share a River," Tinbergen Institute Discussion Papers 20-016/II, Tinbergen Institute.
  7. Shivshanker Singh Patel & Parthasarathy Ramachandran, 2019. "A Bilateral River Bargaining Problem with Negative Externality," Papers 1912.05844, arXiv.org.
  8. Dongshuang Hou & Aymeric Lardon & Panfei Sun & Genjiu Xu, 2019. "Sharing a Polluted River under Waste Flow Control," GREDEG Working Papers 2019-23, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
  9. Sylvain Béal & Adriana Navarro-Ramos & Eric Rémila & Philippe Solal, 2023. "Sharing the cost of hazardous transportation networks and the Priority Shapley value," Working Papers hal-04222245, HAL.
  10. Wenzhong Li & Genjiu Xu & Rene van den Brink, 2021. "Sharing the cost of cleaning up a polluted river," Tinbergen Institute Discussion Papers 21-028/II, Tinbergen Institute.
  11. Jorge Alcalde-Unzu & Maria Gomez-Rua & Elena Molis, 2018. "Allocating the costs of cleaning a river; estimating responsibilities versus incentive compatibility," ThE Papers 18/02, Department of Economic Theory and Economic History of the University of Granada..
  12. Francesco Ciardiello & Andrea Genovese & Shucheng Luo & Antonino Sgalambro, 2023. "A game-theoretic multi-stakeholder model for cost allocation in urban consolidation centres," Annals of Operations Research, Springer, vol. 324(1), pages 663-686, May.
  13. Gudmundsson, Jens & Hougaard, Jens Leth & Ko, Chiu Yu, 2019. "Decentralized mechanisms for river sharing," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 67-81.
  14. Jorge Alcalde-Unzu & María Gómez-Rúa & Elena Molis, 2021. "Allocating the costs of cleaning a river: expected responsibility versus median responsibility," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(1), pages 185-214, March.
  15. van den Brink, René & He, Simin & Huang, Jia-Ping, 2018. "Polluted river problems and games with a permission structure," Games and Economic Behavior, Elsevier, vol. 108(C), pages 182-205.
  16. Jens Gudmundsson & Jens Leth Hougaard, 2021. "River pollution abatement: Decentralized solutions and smart contracts," IFRO Working Paper 2021/07, University of Copenhagen, Department of Food and Resource Economics, revised Oct 2021.
  17. Dongshuang Hou & Qianqian Kong & Xia Zhang & Hao Sun, 2021. "Adjacent Downstream Compensation Method of Sharing Polluted Rivers," Group Decision and Negotiation, Springer, vol. 30(1), pages 251-265, February.
  18. Wenzhong Li & Genjiu Xu & René van den Brink, 2023. "Two new classes of methods to share the cost of cleaning up a polluted river," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 61(1), pages 35-59, July.
  19. Acosta-Vega, Rick K. & Algaba, Encarnación & Sánchez-Soriano, Joaquín, 2023. "Design of water quality policies based on proportionality in multi-issue problems with crossed claims," European Journal of Operational Research, Elsevier, vol. 311(2), pages 777-788.
  20. Takayuki Oishi & Gerard van der Laan & René van den Brink, 2018. "The Tort Law and the Nucleolus for Generalized Joint Liability Problems," Discussion Papers 37, Meisei University, School of Economics.
  21. Hao Wu & Rene van den Brink & Arantza Estevez-Fernandez, 2022. "Highway toll allocation," Tinbergen Institute Discussion Papers 22-036/II, Tinbergen Institute.
  22. Panfei Sun & Dongshuang Hou & Hao Sun, 2019. "Responsibility and sharing the cost of cleaning a polluted river," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(1), pages 143-156, February.
  23. Jens Gudmundsson & Jens Leth Hougaard & Chiu Yu Ko, 2020. "Sharing sequentially triggered losses," IFRO Working Paper 2020/05, University of Copenhagen, Department of Food and Resource Economics.
  24. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
  25. Teresa Estañ & Natividad Llorca & Ricardo Martínez & Joaquín Sánchez-Soriano, 2019. "On how to allocate the fixed cost of transport networks," ThE Papers 19/03, Department of Economic Theory and Economic History of the University of Granada..
  26. Teresa Estañ & Natividad Llorca & Ricardo Martínez & Joaquín Sánchez-Soriano, 2021. "On how to allocate the fixed cost of transport systems," Annals of Operations Research, Springer, vol. 301(1), pages 81-105, June.
  27. Abraham, Anand & Ramachandran, Parthasarathy, 2020. "A solution for the flood cost sharing problem," Economics Letters, Elsevier, vol. 189(C).
  28. Kevin Techer, 2023. "Hazardous waste transportation: a cost allocation analysis," Working Papers hal-04099139, HAL.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.