IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v51y2003i2p210-227.html
   My bibliography  Save this item

A Time-Series Framework for Supply-Chain Inventory Management

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Kenneth Gilbert, 2005. "An ARIMA Supply Chain Model," Management Science, INFORMS, vol. 51(2), pages 305-310, February.
  2. Özalp Özer & Wei Wei, 2006. "Strategic Commitments for an Optimal Capacity Decision Under Asymmetric Forecast Information," Management Science, INFORMS, vol. 52(8), pages 1238-1257, August.
  3. Noam Shamir & Hyoduk Shin, 2016. "Public Forecast Information Sharing in a Market with Competing Supply Chains," Management Science, INFORMS, vol. 62(10), pages 2994-3022, October.
  4. Gérard P. Cachon & Taylor Randall & Glen M. Schmidt, 2007. "In Search of the Bullwhip Effect," Manufacturing & Service Operations Management, INFORMS, vol. 9(4), pages 457-479, April.
  5. Nikolay Osadchiy & Vishal Gaur & Sridhar Seshadri, 2016. "Systematic Risk in Supply Chain Networks," Management Science, INFORMS, vol. 62(6), pages 1755-1777, June.
  6. Li Chen & Hau L. Lee, 2009. "Information Sharing and Order Variability Control Under a Generalized Demand Model," Management Science, INFORMS, vol. 55(5), pages 781-797, May.
  7. Saoud, Patrick & Kourentzes, Nikolaos & Boylan, John E., 2022. "Approximations for the Lead Time Variance: a Forecasting and Inventory Evaluation," Omega, Elsevier, vol. 110(C).
  8. Özalp Özer & Upender Subramanian & Yu Wang, 2018. "Information Sharing, Advice Provision, or Delegation: What Leads to Higher Trust and Trustworthiness?," Management Science, INFORMS, vol. 64(1), pages 474-493, January.
  9. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
  10. Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.
  11. Zhang, Xiaolong, 2007. "Inventory control under temporal demand heteroscedasticity," European Journal of Operational Research, Elsevier, vol. 182(1), pages 127-144, October.
  12. Gonçalves, Carla & Bessa, Ricardo J. & Pinson, Pierre, 2021. "A critical overview of privacy-preserving approaches for collaborative forecasting," International Journal of Forecasting, Elsevier, vol. 37(1), pages 322-342.
  13. Ruomeng Cui & Gad Allon & Achal Bassamboo & Jan A. Van Mieghem, 2015. "Information Sharing in Supply Chains: An Empirical and Theoretical Valuation," Management Science, INFORMS, vol. 61(11), pages 2803-2824, November.
  14. Özalp Özer & Yanchong Zheng & Yufei Ren, 2014. "Trust, Trustworthiness, and Information Sharing in Supply Chains Bridging China and the United States," Management Science, INFORMS, vol. 60(10), pages 2435-2460, October.
  15. Emilio Carrizosa & Alba V. Olivares-Nadal & Pepa Ramírez-Cobo, 2020. "Embedding the production policy in location-allocation decisions," 4OR, Springer, vol. 18(3), pages 357-380, September.
  16. Li Chen & Hau L. Lee, 2012. "Bullwhip Effect Measurement and Its Implications," Operations Research, INFORMS, vol. 60(4), pages 771-784, August.
  17. Zhou, Haijie & Chen, Kebing & Wang, Shengbin, 2023. "Two-period pricing and inventory decisions of perishable products with partial lost sales," European Journal of Operational Research, Elsevier, vol. 310(2), pages 611-626.
  18. Yanfeng Ouyang & Carlos Daganzo, 2006. "Characterization of the Bullwhip Effect in Linear, Time-Invariant Supply Chains: Some Formulae and Tests," Management Science, INFORMS, vol. 52(10), pages 1544-1556, October.
  19. Wang, Xun & Disney, Stephen M. & Wang, Jing, 2014. "Exploring the oscillatory dynamics of a forbidden returns inventory system," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 3-12.
  20. Agrawal, Sunil & Sengupta, Raghu Nandan & Shanker, Kripa, 2009. "Impact of information sharing and lead time on bullwhip effect and on-hand inventory," European Journal of Operational Research, Elsevier, vol. 192(2), pages 576-593, January.
  21. Halkos, George & Kevork, Ilias, 2013. "Forecasting the optimal order quantity in the newsvendor model under a correlated demand," MPRA Paper 44189, University Library of Munich, Germany.
  22. Avinadav, Tal & Chernonog, Tatyana & Ben-Zvi, Tal, 2019. "The effect of information superiority on a supply chain of virtual products," International Journal of Production Economics, Elsevier, vol. 216(C), pages 384-397.
  23. Tor Schoenmeyr & Stephen C. Graves, 2009. "Strategic Safety Stocks in Supply Chains with Evolving Forecasts," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 657-673, March.
  24. Chatfield, Dean C. & Pritchard, Alan M., 2013. "Returns and the bullwhip effect," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 159-175.
  25. Gao, Long, 2015. "Collaborative forecasting, inventory hedging and contract coordination in dynamic supply risk management," European Journal of Operational Research, Elsevier, vol. 245(1), pages 133-145.
  26. Zhang, Xiaolong & Burke, Gerard J., 2011. "Analysis of compound bullwhip effect causes," European Journal of Operational Research, Elsevier, vol. 210(3), pages 514-526, May.
  27. Baruah, Pundarikaksha, 2006. "Supply Chains Facing Atypical Demand: Optimal Operational Policies And Benefits Under Information Sharing," MPRA Paper 16101, University Library of Munich, Germany.
  28. Gaalman, Gerard & Disney, Stephen M., 2009. "On bullwhip in a family of order-up-to policies with ARMA(2,2) demand and arbitrary lead-times," International Journal of Production Economics, Elsevier, vol. 121(2), pages 454-463, October.
  29. Katy S. Azoury & Julia Miyaoka, 2009. "Optimal Policies and Approximations for a Bayesian Linear Regression Inventory Model," Management Science, INFORMS, vol. 55(5), pages 813-826, May.
  30. Siqi Ma & Li Hao & John A. Aloysius, 2021. "Women are an Advantage in Supply Chain Collaboration and Efficiency," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1427-1441, May.
  31. Ouyang, Yanfeng & Daganzo, Carlos, 2008. "Robust tests for the bullwhip effect in supply chains with stochastic dynamics," European Journal of Operational Research, Elsevier, vol. 185(1), pages 340-353, February.
  32. Layth C. Alwan & Christian H. Weiß, 2017. "INAR implementation of newsvendor model for serially dependent demand counts," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1085-1099, February.
  33. Felix Papier, 2016. "Supply Allocation Under Sequential Advance Demand Information," Operations Research, INFORMS, vol. 64(2), pages 341-361, April.
  34. Wei Deng & Rajvardhan Patil & Fangyao Liu & Ergu Daji & Yong Shi, 2022. "Exploring Freight Loading Management by Deep Learning: a Case Study in Home Furnishing Industry," Annals of Data Science, Springer, vol. 9(2), pages 213-228, April.
  35. Xiangwen Lu & Jing-Sheng Song & Amelia Regan, 2006. "Inventory Planning with Forecast Updates: Approximate Solutions and Cost Error Bounds," Operations Research, INFORMS, vol. 54(6), pages 1079-1097, December.
  36. Koussaila Hamiche & Michel Fliess & Cédric Join & Hassane Abouaïssa, 2019. "Bullwhip effect attenuation in supply chain management via control-theoretic tools and short-term forecasts: A preliminary study with an application to perishable inventories," Post-Print hal-02050480, HAL.
  37. Özalp Özer & Yanchong Zheng & Kay-Yut Chen, 2011. "Trust in Forecast Information Sharing," Management Science, INFORMS, vol. 57(6), pages 1111-1137, June.
  38. Xiaoxin Zhu & Guanghai Zhang & Baiqing Sun, 2019. "A comprehensive literature review of the demand forecasting methods of emergency resources from the perspective of artificial intelligence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 65-82, May.
  39. Ying Chen & Krystel K. Castillo-Villar & Bing Dong, 2021. "Stochastic control of a micro-grid using battery energy storage in solar-powered buildings," Annals of Operations Research, Springer, vol. 303(1), pages 197-216, August.
  40. Yu, Yugang & Zhou, Sijie & Shi, Ye, 2020. "Information sharing or not across the supply chain: The role of carbon emission reduction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
  41. Jiang, Zhong-Zhong & Zhao, Jinlong & Zhang, Yinghao & Yi, Zelong, 2022. "Unraveling the cheap talk’s informativeness of product quality in supply chains: A lying aversion perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
  42. Chen, Yenming J. & Sheu, Jiuh-Biing & Lirn, Taih-Cherng, 2012. "Fault tolerance modeling for an e-waste recycling supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(5), pages 897-906.
  43. Malo Huard & Rémy Garnier & Gilles Stoltz, 2020. "Hierarchical robust aggregation of sales forecasts at aggregated levels in e-commerce, based on exponential smoothing and Holt's linear trend method," Working Papers hal-02794320, HAL.
  44. Manfred Deistler & Klaus Neusser, 2004. "Prognose uni- und multivariater Zeitreihen," Diskussionsschriften dp0401, Universitaet Bern, Departement Volkswirtschaft.
  45. Robert L. Bray & Haim Mendelson, 2012. "Information Transmission and the Bullwhip Effect: An Empirical Investigation," Management Science, INFORMS, vol. 58(5), pages 860-875, May.
  46. Riezebos, J. & Gaalman, G.J.C., 2009. "A single-item inventory model for expected inventory order crossovers," International Journal of Production Economics, Elsevier, vol. 121(2), pages 601-609, October.
  47. Warburton, Roger D.H. & Hodgson, J.P.E. & Nielsen, E.H., 2014. "Exact solutions to the supply chain equations for arbitrary, time-dependent demands," International Journal of Production Economics, Elsevier, vol. 151(C), pages 195-205.
  48. Chernonog, Tatyana & Avinadav, Tal, 2019. "Pricing and advertising in a supply chain of perishable products under asymmetric information," International Journal of Production Economics, Elsevier, vol. 209(C), pages 249-264.
  49. Mila Nambiar & David Simchi‐Levi & He Wang, 2021. "Dynamic Inventory Allocation with Demand Learning for Seasonal Goods," Production and Operations Management, Production and Operations Management Society, vol. 30(3), pages 750-765, March.
  50. Lucy Gongtao Chen & Srinagesh Gavirneni, 2010. "Using Scheduled Ordering to Improve the Performance of Distribution Supply Chains," Management Science, INFORMS, vol. 56(9), pages 1615-1632, September.
  51. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
  52. Li Chen & Wei Luo & Kevin Shang, 2017. "Measuring the Bullwhip Effect: Discrepancy and Alignment Between Information and Material Flows," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 36-51, February.
  53. Xiaolong Zhang, 2004. "Evolution of ARMA Demand in Supply Chains," Manufacturing & Service Operations Management, INFORMS, vol. 6(2), pages 195-198, April.
  54. Yossi Aviv, 2007. "On the Benefits of Collaborative Forecasting Partnerships Between Retailers and Manufacturers," Management Science, INFORMS, vol. 53(5), pages 777-794, May.
  55. Leon Yang Chu & Noam Shamir & Hyoduk Shin, 2017. "Strategic Communication for Capacity Alignment with Pricing in a Supply Chain," Management Science, INFORMS, vol. 63(12), pages 4366-4377, December.
  56. Strijbosch, Leo W.G. & Syntetos, Aris A. & Boylan, John E. & Janssen, Elleke, 2011. "On the interaction between forecasting and stock control: The case of non-stationary demand," International Journal of Production Economics, Elsevier, vol. 133(1), pages 470-480, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.