IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v48y2000i5p697-708.html
   My bibliography  Save this item

An Integer Optimization Approach to a Probabilistic Reserve Site Selection Problem

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Marshalek, Elaina C. & Ramage, Benjamin S. & Potts, Matthew D., 2014. "Integrating harvest scheduling and reserve design to improve biodiversity conservation," Ecological Modelling, Elsevier, vol. 287(C), pages 27-35.
  2. Billionnet, Alain, 2013. "Mathematical optimization ideas for biodiversity conservation," European Journal of Operational Research, Elsevier, vol. 231(3), pages 514-534.
  3. Billionnet, Alain, 2011. "Solving the probabilistic reserve selection problem," Ecological Modelling, Elsevier, vol. 222(3), pages 546-554.
  4. Stephanie A. Snyder & Robert G. Haight, 2016. "Application of the Maximal Covering Location Problem to Habitat Reserve Site Selection," International Regional Science Review, , vol. 39(1), pages 28-47, January.
  5. Timothy Matisziw & Alan Murray, 2006. "Promoting species persistence through spatial association optimization in nature reserve design," Journal of Geographical Systems, Springer, vol. 8(3), pages 289-305, September.
  6. Sahan T. M. Dissanayake & Amy W. Ando, 2014. "Valuing Grassland Restoration: Proximity to Substitutes and Trade-offs among Conservation Attributes," Land Economics, University of Wisconsin Press, vol. 90(2), pages 237-259.
  7. Shabbir Ahmed & Dimitri J. Papageorgiou, 2013. "Probabilistic Set Covering with Correlations," Operations Research, INFORMS, vol. 61(2), pages 438-452, April.
  8. Hayri Önal & Robert A. Briers, 2006. "Optimal Selection of a Connected Reserve Network," Operations Research, INFORMS, vol. 54(2), pages 379-388, April.
  9. Beyer, Hawthorne L. & Dujardin, Yann & Watts, Matthew E. & Possingham, Hugh P., 2016. "Solving conservation planning problems with integer linear programming," Ecological Modelling, Elsevier, vol. 328(C), pages 14-22.
  10. Haider, Zulqarnain & Charkhgard, Hadi & Kwon, Changhyun, 2018. "A robust optimization approach for solving problems in conservation planning," Ecological Modelling, Elsevier, vol. 368(C), pages 288-297.
  11. Sándor F. Tóth & Robert G. Haight & Luke W. Rogers, 2011. "Dynamic Reserve Selection: Optimal Land Retention with Land-Price Feedbacks," Operations Research, INFORMS, vol. 59(5), pages 1059-1078, October.
  12. Mark E. Lichtenstein & Claire A. Montgomery, 2003. "Biodiversity and Timber in the Coast Range of Oregon: Inside the Production Possibility Frontier," Land Economics, University of Wisconsin Press, vol. 79(1), pages 56-73.
  13. Onal, Hayri & Yanprechaset, Pornchanok, 2007. "Site accessibility and prioritization of nature reserves," Ecological Economics, Elsevier, vol. 60(4), pages 763-773, February.
  14. Ruliffson, Jane A. & Haight, Robert G. & Homans, Frances R. & Gobster, Paul H., 2002. "Providing Equitable Spatial Distribution Of Protected Natural Areas In A Metropolitan Setting: An Application Of The Location Set-Covering Problem," 2002 Annual meeting, July 28-31, Long Beach, CA 19845, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  15. Hamaide, Bertrand & Albers, Heidi J. & Busby, Gwenlyn, 2014. "Backup coverage models in nature reserve site selection with spatial spread risk heterogeneity," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 158-167.
  16. Ruliffson, Jane A. & Haight, Robert G. & Gobster, Paul H. & Homans, Frances R., 2001. "Exploring Goal Tradeoffs In Metropolitan Natural Area Protection," 2001 Annual meeting, August 5-8, Chicago, IL 20642, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  17. Sanchirico, James N., 2003. "Designing a Cost-Effective Marine Reserve Network: A Bioeconomic Metapopulation Analysis," Discussion Papers 10624, Resources for the Future.
  18. Jafari, Nahid & Hearne, John, 2013. "A new method to solve the fully connected Reserve Network Design Problem," European Journal of Operational Research, Elsevier, vol. 231(1), pages 202-209.
  19. Jeffrey D. Camm & Susan K. Norman & Stephen Polasky & Andrew R. Solow, 2002. "Nature Reserve Site Selection to Maximize Expected Species Covered," Operations Research, INFORMS, vol. 50(6), pages 946-955, December.
  20. Hamaide, Bertrand & Sheerin, Jack, 2011. "Species protection from current reserves: Economic and biological considerations, spatial issues and policy evaluation," Ecological Economics, Elsevier, vol. 70(4), pages 667-675, February.
  21. Hamaide, Bertrand & ReVelle, Charles S. & Malcolm, Scott A., 2006. "Biological reserves, rare species and the trade-off between species abundance and species diversity," Ecological Economics, Elsevier, vol. 56(4), pages 570-583, April.
  22. Matthew Potts & Jeffrey Vincent, 2008. "Spatial distribution of species populations, relative economic values, and the optimal size and number of reserves," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(2), pages 91-112, February.
  23. Laitila, Jussi & Moilanen, Atte, 2012. "Use of many low-level conservation targets reduces high-level conservation performance," Ecological Modelling, Elsevier, vol. 247(C), pages 40-47.
  24. Costello, Christopher & Polasky, Stephen, 2004. "Dynamic reserve site selection," Resource and Energy Economics, Elsevier, vol. 26(2), pages 157-174, June.
  25. Strange, Niels & Jacobsen, Jette Bredahl & Tarp, Peter & Thorsen, Bo Jellesmark, 8. "Excepted coverage of endangered species on Danish heathland," Scandinavian Forest Economics: Proceedings of the Biennial Meeting of the Scandinavian Society of Forest Economics, Scandinavian Society of Forest Economics, issue 41, May.
  26. Weerasena, Lakmali & Shier, Douglas & Tonkyn, David & McFeaters, Mark & Collins, Christopher, 2023. "A sequential approach to reserve design with compactness and contiguity considerations," Ecological Modelling, Elsevier, vol. 478(C).
  27. O’Hanley, Jesse R. & Scaparra, M. Paola & García, Sergio, 2013. "Probability chains: A general linearization technique for modeling reliability in facility location and related problems," European Journal of Operational Research, Elsevier, vol. 230(1), pages 63-75.
  28. Tajibaeva, Liaila & Haight, Robert & Stephen, Polasky, 2014. "Welfare and Biodiversity Tradeoffs in Urban Open Space Protection," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170602, Agricultural and Applied Economics Association.
  29. Boyer, Tracy A., 2003. "The Wetland Restoration Site Selection Problem Under Wetland Mitigation Banking (WMB) in Minnesota," 2003 Annual meeting, July 27-30, Montreal, Canada 22189, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  30. Youngho Lee & Hanif D. Sherali & Ikhyun Kwon & Seongin Kim, 2006. "A new reformulation approach for the generalized partial covering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(2), pages 170-179, March.
  31. O'Hanley, Jesse R. & Church, Richard L., 2011. "Designing robust coverage networks to hedge against worst-case facility losses," European Journal of Operational Research, Elsevier, vol. 209(1), pages 23-36, February.
  32. Artti Juutinen & Mikko Mönkkönen, 2007. "Alternative targets and economic efficiency of selecting protected areas for biodiversity conservation in boreal forest," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(4), pages 713-732, August.
  33. Liu, Kanglin & Zhang, Hengliang & Zhang, Zhi-Hai, 2021. "The efficiency, equity and effectiveness of location strategies in humanitarian logistics: A robust chance-constrained approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
  34. Timothy C. Matisziw, 2019. "Maximizing Expected Coverage of Flow and Opportunity for Diversion in Networked Systems," Networks and Spatial Economics, Springer, vol. 19(1), pages 199-218, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.