IDEAS home Printed from https://ideas.repec.org/r/inm/ormnsc/v46y2000i10p1349-1364.html
   My bibliography  Save this item

Variance Reduction Techniques for Estimating Value-at-Risk

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Cheng-Der Fuh & Huei-Wen Teng & Ren-Her Wang, 2013. "Efficient Importance Sampling for Rare Event Simulation with Applications," Papers 1302.0583, arXiv.org.
  2. Ankush Agarwal & Stefano de Marco & Emmanuel Gobet & Gang Liu, 2017. "Rare event simulation related to financial risks: efficient estimation and sensitivity analysis," Working Papers hal-01219616, HAL.
  3. Soumyadip Ghosh & Raghu Pasupathy, 2012. "C-NORTA: A Rejection Procedure for Sampling from the Tail of Bivariate NORTA Distributions," INFORMS Journal on Computing, INFORMS, vol. 24(2), pages 295-310, May.
  4. Erik Hintz & Marius Hofert & Christiane Lemieux & Yoshihiro Taniguchi, 2022. "Single-Index Importance Sampling with Stratification," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3049-3073, December.
  5. L. Jeff Hong, 2009. "Estimating Quantile Sensitivities," Operations Research, INFORMS, vol. 57(1), pages 118-130, February.
  6. Guangxin Jiang & L. Jeff Hong & Barry L. Nelson, 2020. "Online Risk Monitoring Using Offline Simulation," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 356-375, April.
  7. Rongda Chen & Ze Wang & Lean Yu, 2017. "Importance Sampling for Credit Portfolio Risk with Risk Factors Having t-Copula," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1101-1124, July.
  8. Begen, Mehmet A. & Pun, Hubert & Yan, Xinghao, 2016. "Supply and demand uncertainty reduction efforts and cost comparison," International Journal of Production Economics, Elsevier, vol. 180(C), pages 125-134.
  9. Cheng-Der Fuh & Huei-Wen Teng & Ren-Her Wang, 2018. "Efficient Simulation of Value-at-Risk Under a Jump Diffusion Model: A New Method for Moderate Deviation Events," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 973-990, April.
  10. Cheng-Der Fuh & Inchi Hu & Ya-Hui Hsu & Ren-Her Wang, 2011. "Efficient Simulation of Value at Risk with Heavy-Tailed Risk Factors," Operations Research, INFORMS, vol. 59(6), pages 1395-1406, December.
  11. Xing Jin & Allen X. Zhang, 2006. "Reclaiming Quasi-Monte Carlo Efficiency in Portfolio Value-at-Risk Simulation Through Fourier Transform," Management Science, INFORMS, vol. 52(6), pages 925-938, June.
  12. Peter Christoffersen & Silvia Gonçalves, 2004. "Estimation Risk in Financial Risk Management," CIRANO Working Papers 2004s-15, CIRANO.
  13. He, Zhijian, 2022. "Sensitivity estimation of conditional value at risk using randomized quasi-Monte Carlo," European Journal of Operational Research, Elsevier, vol. 298(1), pages 229-242.
  14. Hui Dong & Marvin K. Nakayama, 2017. "Quantile Estimation with Latin Hypercube Sampling," Operations Research, INFORMS, vol. 65(6), pages 1678-1695, December.
  15. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
  16. Xin Yun & L. Jeff Hong & Guangxin Jiang & Shouyang Wang, 2019. "On gamma estimation via matrix kriging," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(5), pages 393-410, August.
  17. Guangxin Jiang & Michael C. Fu, 2015. "Technical Note—On Estimating Quantile Sensitivities via Infinitesimal Perturbation Analysis," Operations Research, INFORMS, vol. 63(2), pages 435-441, April.
  18. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Estimating risks of option books using neural-SDE market models," Papers 2202.07148, arXiv.org.
  19. Zhang, Pengfei & Gupta, Diwakar, 2023. "Robust optimization with order statistic uncertainty set," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1023-1039.
  20. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
  21. Barry L. Nelson, 2004. "50th Anniversary Article: Stochastic Simulation Research in Management Science," Management Science, INFORMS, vol. 50(7), pages 855-868, July.
  22. Weihuan Huang & Nifei Lin & L. Jeff Hong, 2022. "Monte-Carlo Estimation of CoVaR," Papers 2210.06148, arXiv.org.
  23. Grundke, Peter, 2009. "Importance sampling for integrated market and credit portfolio models," European Journal of Operational Research, Elsevier, vol. 194(1), pages 206-226, April.
  24. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2011. "Efficient Risk Estimation via Nested Sequential Simulation," Management Science, INFORMS, vol. 57(6), pages 1172-1194, June.
  25. Xiaoou Li & Jingchen Liu & Gongjun Xu, 2016. "On the Tail Probabilities of Aggregated Lognormal Random Fields with Small Noise," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 236-246, February.
  26. Kleijnen, J.P.C., 2004. "Design and Analysis of Monte Carlo Experiments," Discussion Paper 2004-17, Tilburg University, Center for Economic Research.
  27. Vergé, Christelle & Morio, Jérôme & Moral, Pierre Del, 2016. "An island particle algorithm for rare event analysis," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 63-75.
  28. Qiyun Pan & Eunshin Byon & Young Myoung Ko & Henry Lam, 2020. "Adaptive importance sampling for extreme quantile estimation with stochastic black box computer models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 524-547, October.
  29. Ankush Agarwal & Stefano de Marco & Emmanuel Gobet & José G López-Salas & Fanny Noubiagain & Alexandre Zhou, 2019. "Numerical approximations of McKean Anticipative Backward Stochastic Differential Equations arising in Initial Margin requirements," Working Papers hal-01686952, HAL.
  30. Helin Zhu & Tianyi Liu & Enlu Zhou, 2015. "Risk Quantification in Stochastic Simulation under Input Uncertainty," Papers 1507.06015, arXiv.org, revised Dec 2017.
  31. Chaitra H. Nagaraja & Haikady N. Nagaraja, 2020. "Distribution‐free Approximate Methods for Constructing Confidence Intervals for Quantiles," International Statistical Review, International Statistical Institute, vol. 88(1), pages 75-100, April.
  32. Lúcio Godeiro, Lucas, 2012. "Estimando o VaR (Value-at-Risk) de carteiras via modelos da família GARCH e via Simulação de Monte Carlo [Estimating the VaR (Value-at-Risk) of portfolios via GARCH family models and via Monte Carl," MPRA Paper 45146, University Library of Munich, Germany.
  33. Derek Bunn, Arne Andresen, Dipeng Chen, Sjur Westgaard, 2016. "Analysis and Forecasting of Electricty Price Risks with Quantile Factor Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
  34. Onur Babat & Juan C. Vera & Luis F. Zuluaga, 2021. "Computing near-optimal Value-at-Risk portfolios using Integer Programming techniques," Papers 2107.07339, arXiv.org.
  35. Huei-Wen Teng, 2023. "Importance Sampling for Calculating the Value-at-Risk and Expected Shortfall of the Quadratic Portfolio with t-Distributed Risk Factors," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1125-1154, October.
  36. Babat, Onur & Vera, Juan C. & Zuluaga, Luis F., 2018. "Computing near-optimal Value-at-Risk portfolios using integer programming techniques," European Journal of Operational Research, Elsevier, vol. 266(1), pages 304-315.
  37. Shih-Kuei Lin & Ren-Her Wang & Cheng-Der Fuh, 2006. "Risk Management for Linear and Non-Linear Assets: A Bootstrap Method with Importance Resampling to Evaluate Value-at-Risk," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(3), pages 261-295, September.
  38. Jiarui Chu & Ludovic Tangpi, 2021. "Non-asymptotic estimation of risk measures using stochastic gradient Langevin dynamics," Papers 2111.12248, arXiv.org, revised Feb 2023.
  39. Wei Jiang & Steven Kou, 2021. "Simulating risk measures via asymptotic expansions for relative errors," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 907-942, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.