Adaptive importance sampling for extreme quantile estimation with stochastic black box computer models
Author
Abstract
Suggested Citation
DOI: 10.1002/nav.21938
Download full text from publisher
References listed on IDEAS
- Neddermeyer, Jan C., 2009. "Computationally Efficient Nonparametric Importance Sampling," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 788-802.
- Jean-Marie Cornuet & Jean-Michel Marin & Antonietta Mira & Christian P. Robert, 2012. "Adaptive Multiple Importance Sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(4), pages 798-812, December.
- Michael B. Gordy & Sandeep Juneja, 2010.
"Nested Simulation in Portfolio Risk Measurement,"
Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
- Michael B. Gordy & Sandeep Juneja, 2008. "Nested simulation in portfolio risk measurement," Finance and Economics Discussion Series 2008-21, Board of Governors of the Federal Reserve System (U.S.).
- repec:dau:papers:123456789/10690 is not listed on IDEAS
- Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2011. "Efficient Risk Estimation via Nested Sequential Simulation," Management Science, INFORMS, vol. 57(6), pages 1172-1194, June.
- Kohler, Michael & Krzyżak, Adam & Walk, Harro, 2014. "Nonparametric recursive quantile estimation," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 102-107.
- Bardou O. & Frikha N. & Pagès G., 2009. "Computing VaR and CVaR using stochastic approximation and adaptive unconstrained importance sampling," Monte Carlo Methods and Applications, De Gruyter, vol. 15(3), pages 173-210, January.
- Bruce Ankenman & Barry L. Nelson & Jeremy Staum, 2010. "Stochastic Kriging for Simulation Metamodeling," Operations Research, INFORMS, vol. 58(2), pages 371-382, April.
- Stéphane Bulteau & Mohamed El Khadiri, 2002. "A new importance sampling Monte Carlo method for a flow network reliability problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(2), pages 204-228, March.
- Wen Shi & Xi Chen, 2018. "Efficient budget allocation strategies for elementary effects method in stochastic simulation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(3), pages 218-241, April.
- Jeremy Oakley, 2004. "Estimating percentiles of uncertain computer code outputs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(1), pages 83-93, January.
- Yunpeng Sun & Daniel W. Apley & Jeremy Staum, 2011. "Efficient Nested Simulation for Estimating the Variance of a Conditional Expectation," Operations Research, INFORMS, vol. 59(4), pages 998-1007, August.
- Feng Yang & Bruce Ankenman & Barry L. Nelson, 2007. "Efficient generation of cycle time‐throughput curves through simulation and metamodeling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(1), pages 78-93, February.
- R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
- Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2000. "Variance Reduction Techniques for Estimating Value-at-Risk," Management Science, INFORMS, vol. 46(10), pages 1349-1364, October.
- L. Jeff Hong & Sandeep Juneja & Guangwu Liu, 2017. "Kernel Smoothing for Nested Estimation with Application to Portfolio Risk Measurement," Operations Research, INFORMS, vol. 65(3), pages 657-673, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Parvin Malekzadeh & Zissis Poulos & Jacky Chen & Zeyu Wang & Konstantinos N. Plataniotis, 2024. "EX-DRL: Hedging Against Heavy Losses with EXtreme Distributional Reinforcement Learning," Papers 2408.12446, arXiv.org, revised Aug 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guangxin Jiang & L. Jeff Hong & Barry L. Nelson, 2020. "Online Risk Monitoring Using Offline Simulation," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 356-375, April.
- David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 350-367, March.
- Mingbin Ben Feng & Eunhye Song, 2020. "Efficient Nested Simulation Experiment Design via the Likelihood Ratio Method," Papers 2008.13087, arXiv.org, revised May 2024.
- Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
- Kun Zhang & Ben Mingbin Feng & Guangwu Liu & Shiyu Wang, 2022. "Sample Recycling for Nested Simulation with Application in Portfolio Risk Measurement," Papers 2203.15929, arXiv.org.
- Liu, Xiaoyu & Yan, Xing & Zhang, Kun, 2024. "Kernel quantile estimators for nested simulation with application to portfolio value-at-risk measurement," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1168-1177.
- Michael Ludkovski & James Risk, 2017. "Sequential Design and Spatial Modeling for Portfolio Tail Risk Measurement," Papers 1710.05204, arXiv.org, revised May 2018.
- Helin Zhu & Tianyi Liu & Enlu Zhou, 2015. "Risk Quantification in Stochastic Simulation under Input Uncertainty," Papers 1507.06015, arXiv.org, revised Dec 2017.
- Youngjun Choe & Henry Lam & Eunshin Byon, 2018. "Uncertainty Quantification of Stochastic Simulation for Black-box Computer Experiments," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1155-1172, December.
- Wang, Tianxiang & Xu, Jie & Hu, Jian-Qiang & Chen, Chun-Hung, 2023. "Efficient estimation of a risk measure requiring two-stage simulation optimization," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1355-1365.
- Runhuan Feng & Peng Li, 2021. "Sample Recycling Method -- A New Approach to Efficient Nested Monte Carlo Simulations," Papers 2106.06028, arXiv.org.
- Michael Kohler & Adam Krzyżak & Reinhard Tent & Harro Walk, 2018. "Nonparametric quantile estimation using importance sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 439-465, April.
- Weihuan Huang & Nifei Lin & L. Jeff Hong, 2022. "Monte-Carlo Estimation of CoVaR," Papers 2210.06148, arXiv.org.
- Dang, Ou & Feng, Mingbin & Hardy, Mary R., 2023. "Two-stage nested simulation of tail risk measurement: A likelihood ratio approach," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 1-24.
- He, Zhijian, 2022. "Sensitivity estimation of conditional value at risk using randomized quasi-Monte Carlo," European Journal of Operational Research, Elsevier, vol. 298(1), pages 229-242.
- L. Jeff Hong & Sandeep Juneja & Guangwu Liu, 2017. "Kernel Smoothing for Nested Estimation with Application to Portfolio Risk Measurement," Operations Research, INFORMS, vol. 65(3), pages 657-673, June.
- Devang Sinha & Siddhartha P. Chakrabarty, 2024. "Multilevel Monte Carlo in Sample Average Approximation: Convergence, Complexity and Application," Papers 2407.18504, arXiv.org.
- Wen Shi & Xi Chen, 2018. "Efficient budget allocation strategies for elementary effects method in stochastic simulation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(3), pages 218-241, April.
- Feng, Ben Mingbin & Li, Johnny Siu-Hang & Zhou, Kenneth Q., 2022. "Green nested simulation via likelihood ratio: Applications to longevity risk management," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 285-301.
- Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:67:y:2020:i:7:p:524-547. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.