IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v65y2018i3p218-241.html
   My bibliography  Save this article

Efficient budget allocation strategies for elementary effects method in stochastic simulation

Author

Listed:
  • Wen Shi
  • Xi Chen

Abstract

This paper focuses on extending the Morris' elementary effects method (MM) for sensitivity analysis/factor screening originated in the context of deterministic computer experiments to the stochastic simulation setting. Given a fixed simulation budget to expend, the main objective is to provide efficient and accurate estimates of main and interaction (or nonlinear) effects coined by the standard MM for characterizing the importance of each factor, despite the impact of simulation errors. Taking into account both the factor/input sampling uncertainty rooted in MM and the random errors inherent in a stochastic simulation, we develop efficient budget allocation strategies for implementing MM in this new context. Under each strategy proposed, we derive its corresponding optimal budget partition and optimal budget allocation rules. Numerical results corroborate the practical effectiveness of the proposed budget allocation strategies.

Suggested Citation

  • Wen Shi & Xi Chen, 2018. "Efficient budget allocation strategies for elementary effects method in stochastic simulation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(3), pages 218-241, April.
  • Handle: RePEc:wly:navres:v:65:y:2018:i:3:p:218-241
    DOI: 10.1002/nav.21802
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21802
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shi, Wen & Kleijnen, Jack P.C. & Liu, Zhixue, 2014. "Factor screening for simulation with multiple responses: Sequential bifurcation," European Journal of Operational Research, Elsevier, vol. 237(1), pages 136-147.
    2. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
    3. Michael B. Gordy & Sandeep Juneja, 2010. "Nested Simulation in Portfolio Risk Measurement," Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
    4. Hong Wan & Bruce E. Ankenman & Barry L. Nelson, 2010. "Improving the Efficiency and Efficacy of Controlled Sequential Bifurcation for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 482-492, August.
    5. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2011. "Efficient Risk Estimation via Nested Sequential Simulation," Management Science, INFORMS, vol. 57(6), pages 1172-1194, June.
    6. Kleijnen, J.P.C. & Bettonvil, B.W.M., 1997. "Searching for important factors in simulation models with many factors : Sequential bifurcation," Other publications TiSEM be826993-22f9-4cb3-89df-3, Tilburg University, School of Economics and Management.
    7. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    8. Morris, Max D., 2006. "Input screening: Finding the important model inputs on a budget," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1252-1256.
    9. Shi, Wen & Shang, Jennifer & Liu, Zhixue & Zuo, Xiaolu, 2014. "Optimal design of the auto parts supply chain for JIT operations: Sequential bifurcation factor screening and multi-response surface methodology," European Journal of Operational Research, Elsevier, vol. 236(2), pages 664-676.
    10. Hua Shen & Hong Wan & Susan M. Sanchez, 2010. "A hybrid method for simulation factor screening," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(1), pages 45-57, February.
    11. Bettonvil, Bert & Kleijnen, Jack P. C., 1997. "Searching for important factors in simulation models with many factors: Sequential bifurcation," European Journal of Operational Research, Elsevier, vol. 96(1), pages 180-194, January.
    12. Jack P.C. Kleijnen, 2015. "Design and Analysis of Simulation Experiments," International Series in Operations Research and Management Science, Springer, edition 2, number 978-3-319-18087-8, December.
    13. Yunpeng Sun & Daniel W. Apley & Jeremy Staum, 2011. "Efficient Nested Simulation for Estimating the Variance of a Conditional Expectation," Operations Research, INFORMS, vol. 59(4), pages 998-1007, August.
    14. Hong Wan & Bruce E. Ankenman & Barry L. Nelson, 2006. "Controlled Sequential Bifurcation: A New Factor-Screening Method for Discrete-Event Simulation," Operations Research, INFORMS, vol. 54(4), pages 743-755, August.
    15. Sanchez, Susan M. & Moeeni, Farhad & Sanchez, Paul J., 2006. "So many factors, so little time...Simulation experiments in the frequency domain," International Journal of Production Economics, Elsevier, vol. 103(1), pages 149-165, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borgonovo, Emanuele & Rabitti, Giovanni, 2023. "Screening: From tornado diagrams to effective dimensions," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1200-1211.
    2. Qiyun Pan & Eunshin Byon & Young Myoung Ko & Henry Lam, 2020. "Adaptive importance sampling for extreme quantile estimation with stochastic black box computer models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 524-547, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    2. Shi, Wen & Chen, Xi, 2019. "Controlled Morris method: A new factor screening approach empowered by a distribution-free sequential multiple testing procedure," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 299-314.
    3. Shi, Wen & Kleijnen, Jack P.C. & Liu, Zhixue, 2014. "Factor screening for simulation with multiple responses: Sequential bifurcation," European Journal of Operational Research, Elsevier, vol. 237(1), pages 136-147.
    4. Kleijnen, Jack P.C., 2017. "Regression and Kriging metamodels with their experimental designs in simulation: A review," European Journal of Operational Research, Elsevier, vol. 256(1), pages 1-16.
    5. Shi, Wen & Kleijnen, J.P.C., 2017. "Testing the Assumptions of Sequential Bifurcation for Factor Screening (revision of CentER DP 2015-034)," Other publications TiSEM 763fd6f8-b618-4b06-a284-5, Tilburg University, School of Economics and Management.
    6. Shi, Wen & Shang, Jennifer & Liu, Zhixue & Zuo, Xiaolu, 2014. "Optimal design of the auto parts supply chain for JIT operations: Sequential bifurcation factor screening and multi-response surface methodology," European Journal of Operational Research, Elsevier, vol. 236(2), pages 664-676.
    7. Shi, W. & Kleijnen, J.P.C., 2015. "Validating the Assumptions of Sequential Bifurcation in Factor Screening," Discussion Paper 2015-034, Tilburg University, Center for Economic Research.
    8. Nicola Rossi & Mario Bačić & Lovorka Librić & Meho Saša Kovačević, 2023. "Methodology for Identification of the Key Levee Parameters for Limit-State Analyses Based on Sequential Bifurcation," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    9. David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 350-367, March.
    10. Mingbin Ben Feng & Eunhye Song, 2020. "Optimal Nested Simulation Experiment Design via Likelihood Ratio Method," Papers 2008.13087, arXiv.org, revised Jul 2021.
    11. Shi, Wen & Zhou, Qing & Zhou, Yanju, 2023. "An efficient elementary effect-based method for sensitivity analysis in identifying main and two-factor interaction effects," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    13. Plischke, Elmar & Borgonovo, Emanuele & Smith, Curtis L., 2013. "Global sensitivity measures from given data," European Journal of Operational Research, Elsevier, vol. 226(3), pages 536-550.
    14. Liu, Xiaoyu & Yan, Xing & Zhang, Kun, 2024. "Kernel quantile estimators for nested simulation with application to portfolio value-at-risk measurement," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1168-1177.
    15. Guangxin Jiang & L. Jeff Hong & Barry L. Nelson, 2020. "Online Risk Monitoring Using Offline Simulation," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 356-375, April.
    16. Wang, Tianxiang & Xu, Jie & Hu, Jian-Qiang & Chen, Chun-Hung, 2023. "Efficient estimation of a risk measure requiring two-stage simulation optimization," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1355-1365.
    17. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    18. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
    19. Runhuan Feng & Peng Li, 2021. "Sample Recycling Method -- A New Approach to Efficient Nested Monte Carlo Simulations," Papers 2106.06028, arXiv.org.
    20. Kun Zhang & Ben Mingbin Feng & Guangwu Liu & Shiyu Wang, 2022. "Sample Recycling for Nested Simulation with Application in Portfolio Risk Measurement," Papers 2203.15929, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:65:y:2018:i:3:p:218-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.