IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/45146.html
   My bibliography  Save this paper

Estimando o VaR (Value-at-Risk) de carteiras via modelos da família GARCH e via Simulação de Monte Carlo
[Estimating the VaR (Value-at-Risk) of portfolios via GARCH family models and via Monte Carlo Simulation]

Author

Listed:
  • Lúcio Godeiro, Lucas

Abstract

The objective this work is to calculate the VaR of portfolios via GARCH family models with normal and t-student distribution and via Monte Carlo Simulation. It was used three portfolios composite with preferential stocks of five companies of the Ibovespa. The results show that the t distribution adjusts better to data, because the violation ratio of the VaR calculated with t distribution is less violation ratio estimated with normal distribution.

Suggested Citation

  • Lúcio Godeiro, Lucas, 2012. "Estimando o VaR (Value-at-Risk) de carteiras via modelos da família GARCH e via Simulação de Monte Carlo [Estimating the VaR (Value-at-Risk) of portfolios via GARCH family models and via Monte Carl," MPRA Paper 45146, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:45146
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/45146/1/MPRA_paper_45146.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/45146/2/MPRA_paper_45146.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    2. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    3. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. James W. Taylor, 2005. "Generating Volatility Forecasts from Value at Risk Estimates," Management Science, INFORMS, vol. 51(5), pages 712-725, May.
    6. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    7. Engle, Robert F. & Manganelli, Simone, 2001. "Value at risk models in finance," Working Paper Series 75, European Central Bank.
    8. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    9. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    10. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2000. "Variance Reduction Techniques for Estimating Value-at-Risk," Management Science, INFORMS, vol. 46(10), pages 1349-1364, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonzalo Cortazar & Alejandro Bernales & Diether Beuermann, 2005. "Methodology and Implementation of Value-at-Risk Measures in Emerging Fixed-Income Markets with Infrequent Trading," Finance 0512030, University Library of Munich, Germany.
    2. Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    4. Timo Dimitriadis & Xiaochun Liu & Julie Schnaitmann, 2020. "Encompassing Tests for Value at Risk and Expected Shortfall Multi-Step Forecasts based on Inference on the Boundary," Papers 2009.07341, arXiv.org.
    5. Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
    6. Chao Wang & Qian Chen & Richard Gerlach, 2017. "Bayesian Realized-GARCH Models for Financial Tail Risk Forecasting Incorporating Two-sided Weibull Distribution," Papers 1707.03715, arXiv.org.
    7. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    8. Carol Alexander & Emese Lazar & Silvia Stanescu, 2011. "Analytic Approximations to GARCH Aggregated Returns Distributions with Applications to VaR and ETL," ICMA Centre Discussion Papers in Finance icma-dp2011-08, Henley Business School, University of Reading.
    9. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    10. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    11. Vincenzo Candila & Giampiero M. Gallo & Lea Petrella, 2020. "Mixed--frequency quantile regressions to forecast Value--at--Risk and Expected Shortfall," Papers 2011.00552, arXiv.org, revised Mar 2023.
    12. Shiferaw, Y., 2018. "The Bayesian MS-GARCH model and Value-at-Risk in South African agricultural commodity price markets," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275991, International Association of Agricultural Economists.
    13. Nico Katzke & Chris Garbers, 2015. "Do Long Memory and Asymmetries Matter When Assessing Downside Return Risk?," Working Papers 06/2015, Stellenbosch University, Department of Economics.
    14. Xiaochun Liu, 2017. "An integrated macro‐financial risk‐based approach to the stressed capital requirement," Review of Financial Economics, John Wiley & Sons, vol. 34(1), pages 86-98, September.
    15. Wang, Meng & Chen, Zhao & Wang, Christina Dan, 2018. "Composite quantile regression for GARCH models using high-frequency data," Econometrics and Statistics, Elsevier, vol. 7(C), pages 115-133.
    16. Timotheos Angelidis & Stavros Degiannakis, 2005. "Modeling risk for long and short trading positions," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 6(3), pages 226-238, July.
    17. Marius Galabe Sampid & Haslifah M Hasim & Hongsheng Dai, 2018. "Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-33, June.
    18. Krzysztof Echaust & Małgorzata Just, 2021. "Tail Dependence between Crude Oil Volatility Index and WTI Oil Price Movements during the COVID-19 Pandemic," Energies, MDPI, vol. 14(14), pages 1-21, July.
    19. Amaro, Raphael & Pinho, Carlos, 2022. "Energy commodities: A study on model selection for estimating Value-at-Risk," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 68, pages 5-27.
    20. Emrah Altun, 2019. "Two-sided exponential–geometric distribution: inference and volatility modeling," Computational Statistics, Springer, vol. 34(3), pages 1215-1245, September.

    More about this item

    Keywords

    VaR; GARCH; Monte Carlo Simulation.;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:45146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.