IDEAS home Printed from https://ideas.repec.org/r/eee/respol/v44y2015i1p244-257.html
   My bibliography  Save this item

Environmental regulation and the cross-border diffusion of new technology: Evidence from automobile patents

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Chakraborty, Pavel & Chatterjee, Chirantan, 2017. "Does environmental regulation indirectly induce upstream innovation? New evidence from India," Research Policy, Elsevier, vol. 46(5), pages 939-955.
  2. Jinfu Xu & Shaoxiong Yang & Yu Lin & Ruoyu Yang, 2021. "An evaluation of coupling coordination between sports industry and health service industry in China," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-21, August.
  3. Quatraro, Francesco & Scandura, Alessandra, 2019. "Academic Inventors and the Antecedents of Green Technologies. A Regional Analysis of Italian Patent Data," Ecological Economics, Elsevier, vol. 156(C), pages 247-263.
  4. Kim, Yeong Jae & Brown, Marilyn, 2019. "Impact of domestic energy-efficiency policies on foreign innovation: The case of lighting technologies," Energy Policy, Elsevier, vol. 128(C), pages 539-552.
  5. Sugandha Srivastav & Sam Fankhauser & Alex Kazaglis, 2018. "Low-Carbon Competitiveness in Asia," Economies, MDPI, vol. 6(1), pages 1-18, January.
  6. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
  7. Marzucchi, Alberto & Montresor, Sandro, 2017. "Forms of knowledge and eco-innovation modes: Evidence from Spanish manufacturing firms," Ecological Economics, Elsevier, vol. 131(C), pages 208-221.
  8. Sun, Huaping & Edziah, Bless Kofi & Kporsu, Anthony Kwaku & Sarkodie, Samuel Asumadu & Taghizadeh-Hesary, Farhad, 2021. "Energy efficiency: The role of technological innovation and knowledge spillover," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
  9. Chen, Fenglong & Wang, Meichang & Pu, Zhengning, 2022. "The impact of technological innovation on air pollution: Firm-level evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
  10. Gianluca Orsatti & Francesco Quatraro & Alessandra Scandura, 2020. "Regional differences in the generation of green technologies: the role of local recombinant capabilities and academic inventors," Carlo Alberto Notebooks 617, Collegio Carlo Alberto.
  11. Rik L. Rozendaal & Herman R. J. Vollebergh, 2021. "Policy-Induced Innovation in Clean Technologies: Evidence from the Car Market," CESifo Working Paper Series 9422, CESifo.
  12. F. Fusillo & F. Quatraro & S. Usai, 2019. "Going Green: Environmental Regulation, eco-innovation and technological alliances," Working Paper CRENoS 201907, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
  13. Chakraborty, Pavel & Chakrabarti, Anindya S. & Chatterjee, Chirantan, 2023. "Cross-border environmental regulation and firm labor demand," Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
  14. Pan, Xiuzhen & Wei, Zixiang & Han, Botang & Shahbaz, Muhammad, 2021. "The heterogeneous impacts of interregional green technology spillover on energy intensity in China," Energy Economics, Elsevier, vol. 96(C).
  15. Jianming Zhang & Gongqian Liang & Taiwen Feng & Chunlin Yuan & Wenbo Jiang, 2020. "Green innovation to respond to environmental regulation: How external knowledge adoption and green absorptive capacity matter?," Business Strategy and the Environment, Wiley Blackwell, vol. 29(1), pages 39-53, January.
  16. George Halkos & Antonis Skouloudis, 2021. "Environmental technology development and diffusion: panel data evidence from 56 countries," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(1), pages 79-92, January.
  17. Sungjoo Lee & Chanwoo Cho & Jaehong Choi & Byungun Yoon, 2017. "R&D Project Selection Incorporating Customer-Perceived Value and Technology Potential: The Case of the Automobile Industry," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
  18. Jingbo Cui & Zhenxuan Wang & Haishan Yu, 2022. "Can International Climate Cooperation Induce Knowledge Spillover to Developing Countries? Evidence from CDM," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(4), pages 923-951, August.
  19. Luyun Xu & Jian Li & Xin Zhou, 2019. "Exploring new knowledge through research collaboration: the moderation of the global and local cohesion of knowledge networks," The Journal of Technology Transfer, Springer, vol. 44(3), pages 822-849, June.
  20. Valeria Costantini & Valerio Leone Sciabolazza & Elena Paglialunga, 2023. "Network-driven positive externalities in clean energy technology production: the case of energy efficiency in the EU residential sector," The Journal of Technology Transfer, Springer, vol. 48(2), pages 716-748, April.
  21. Costa-Campi, M.T. & García-Quevedo, J. & Martínez-Ros, E., 2017. "What are the determinants of investment in environmental R&D?," Energy Policy, Elsevier, vol. 104(C), pages 455-465.
  22. Subtil Lacerda, Juliana & van den Bergh, Jeroen C.J.M., 2020. "Effectiveness of an ‘open innovation’ approach in renewable energy: Empirical evidence from a survey on solar and wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
  23. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
  24. Cai, Hechang & Wang, Zilong & Zhang, Zhiwen & Xu, Liuyang, 2023. "Does environmental regulation promote technology transfer? Evidence from a partially linear functional-coefficient panel model," Economic Modelling, Elsevier, vol. 124(C).
  25. Ming Yi & Xiaomeng Fang & Le Wen & Fengtao Guang & Yao Zhang, 2019. "The Heterogeneous Effects of Different Environmental Policy Instruments on Green Technology Innovation," IJERPH, MDPI, vol. 16(23), pages 1-19, November.
  26. Busra Agan & Mehmet Balcilar, 2022. "On the Determinants of Green Technology Diffusion: An Empirical Analysis of Economic, Social, Political, and Environmental Factors," Sustainability, MDPI, vol. 14(4), pages 1-23, February.
  27. Peter M. Bican & Dirk Caspary & Carsten C. Guderian, 2023. "Cross-Border Dynamics of IP Modularity: International Patenting in LEDs and Lithium-Ion Secondary Battery Technology," Management International Review, Springer, vol. 63(2), pages 347-376, April.
  28. Subtil Lacerda, Juliana & van den Bergh, Jeroen C.J.M., 2016. "Diversity in solar photovoltaic energy: Implications for innovation and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 331-340.
  29. Consoli, Davide & Costantini, Valeria & Paglialunga, Elena, 2023. "We're in this together: Sustainable energy and economic competitiveness in the EU," Research Policy, Elsevier, vol. 52(1).
  30. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
  31. Valero-Gil, Jesus & Surroca, Jordi A. & Tribo, Josep A. & Gutierrez, Leopoldo & Montiel, Ivan, 2023. "Innovation vs. standardization: The conjoint effects of eco-innovation and environmental management systems on environmental performance," Research Policy, Elsevier, vol. 52(4).
  32. Corrocher, Nicoletta & Mancusi, Maria Luisa, 2021. "International collaborations in green energy technologies: What is the role of distance in environmental policy stringency?," Energy Policy, Elsevier, vol. 156(C).
  33. Wang, Yiwei & Miao, Qing, 2021. "The impact of the corporate average fuel economy standards on technological changes in automobile fuel efficiency," Resource and Energy Economics, Elsevier, vol. 63(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.