IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v97y2018icp165-176.html
   My bibliography  Save this item

Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Dongwang Zhang & Zhong Huang & Xiaobei Shi & Xiaofei Sun & Tuo Zhou & Hairui Yang & Rushan Bie & Man Zhang, 2024. "Experimental Study and Process Simulation on Pyrolysis Characteristics of Decommissioned Wind Turbine Blades," Energies, MDPI, vol. 17(13), pages 1-16, July.
  2. Chong, Cheng Tung & Fan, Yee Van & Lee, Chew Tin & Klemeš, Jiří Jaromír, 2022. "Post COVID-19 ENERGY sustainability and carbon emissions neutrality," Energy, Elsevier, vol. 241(C).
  3. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  4. Francisco Haces-Fernandez, 2020. "GoWInD: Wind Energy Spatiotemporal Assessment and Characterization of End-of-Life Activities," Energies, MDPI, vol. 13(22), pages 1-20, November.
  5. Xu, Jiuping & Liu, Tingting, 2020. "Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development," Energy Policy, Elsevier, vol. 142(C).
  6. Sara Taherinezhad Tayebi & Matteo Sambucci & Marco Valente, 2024. "Waste Management of Wind Turbine Blades: A Comprehensive Review on Available Recycling Technologies with A Focus on Overcoming Potential Environmental Hazards Caused by Microplastic Production," Sustainability, MDPI, vol. 16(11), pages 1-24, May.
  7. Majewski, Peter & Florin, Nick & Jit, Joytishna & Stewart, Rodney A., 2022. "End-of-life policy considerations for wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
  8. Winkler, Lorenz & Kilic, Onur A. & Veldman, Jasper, 2022. "Collaboration in the offshore wind farm decommissioning supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  9. Chen, Zhiyuan & Wang, Feng & Wang, Tieli & He, Rulin & Hu, Jieli & Li, Li & Luo, Ying & Qin, Yingling & Wang, Dingliang, 2024. "A real options approach to renewable energy module end-of-life decisions under multiple uncertainties: Application to PV and wind in China," Renewable Energy, Elsevier, vol. 226(C).
  10. Kai-Yen Chin & Angus Shiue & Yi-Jing Wu & Shu-Mei Chang & Yeou-Fong Li & Ming-Yuan Shen & Graham Leggett, 2022. "Studies on Recycling Silane Controllable Recovered Carbon Fiber from Waste CFRP," Sustainability, MDPI, vol. 14(2), pages 1-12, January.
  11. Emma L. Delaney & Paul G. Leahy & Jennifer M. McKinley & T. Russell Gentry & Angela J. Nagle & Jeffrey Elberling & Lawrence C. Bank, 2023. "Sustainability Implications of Current Approaches to End-of-Life of Wind Turbine Blades—A Review," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
  12. Oh, So Young & Joung, Chanwoo & Lee, Seonghwan & Shim, Yoon-Bo & Lee, Dahun & Cho, Gyu-Eun & Jang, Juhyeong & Lee, In Yong & Park, Young-Bin, 2024. "Condition-based maintenance of wind turbine structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
  13. Teixeira, Bernardo & Brito, Miguel Centeno & Mateus, António, 2024. "Raw materials for the Portuguese decarbonization roadmap: The case of solar photovoltaics and wind energy," Resources Policy, Elsevier, vol. 90(C).
  14. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  15. Lund, K.W. & Madsen, E.S., 2024. "State-of-the-art value chain roadmap for sustainable end-of-life wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
  16. Mário Joel Ramos Júnior & Diego Lima Medeiros & Joyce Batista Azevedo & Edna dos Santos Almeida, 2025. "Wind Turbine Blade Decommissioning in Brazil: The Economic Performance of Energy Recovery in a Cement Kiln Compared to Industrial Landfill Site," Sustainability, MDPI, vol. 17(1), pages 1-22, January.
  17. Ali Akbar Firoozi & Ali Asghar Firoozi & Farzad Hejazi, 2024. "Innovations in Wind Turbine Blade Engineering: Exploring Materials, Sustainability, and Market Dynamics," Sustainability, MDPI, vol. 16(19), pages 1-35, October.
  18. Liu, Y. & Hajj, M. & Bao, Y., 2022. "Review of robot-based damage assessment for offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  19. Mumtaz, Hamza & Sobek, Szymon & Sajdak, Marcin & Muzyka, Roksana & Werle, Sebastian, 2023. "An experimental investigation and process optimization of the oxidative liquefaction process as the recycling method of the end-of-life wind turbine blades," Renewable Energy, Elsevier, vol. 211(C), pages 269-278.
  20. Jelle Joustra & Bas Flipsen & Ruud Balkenende, 2021. "Circular Design of Composite Products: A Framework Based on Insights from Literature and Industry," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
  21. John Dorrell & Keunjae Lee, 2020. "The Cost of Wind: Negative Economic Effects of Global Wind Energy Development," Energies, MDPI, vol. 13(14), pages 1-25, July.
  22. Mumtaz, Hamza & Sobek, Szymon & Sajdak, Marcin & Muzyka, Roksana & Drewniak, Sabina & Werle, Sebastian, 2023. "Oxidative liquefaction as an alternative method of recycling and the pyrolysis kinetics of wind turbine blades," Energy, Elsevier, vol. 278(PB).
  23. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the glass industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  24. Xu, Ming-xin & Ji, Hai-wen & Wu, Ya-chang & Meng, Xiang-xi & Di, Jin-yi & Yang, Jie & Lu, Qiang, 2024. "Recovering glass fibers from waste wind turbine blades: Recycling methods, fiber properties, and potential utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
  25. Ali Akbar Firoozi & Farzad Hejazi & Ali Asghar Firoozi, 2024. "Advancing Wind Energy Efficiency: A Systematic Review of Aerodynamic Optimization in Wind Turbine Blade Design," Energies, MDPI, vol. 17(12), pages 1-30, June.
  26. Lund, Kristine Wilhelm & Nielsen, Mikkel Liep & Madsen, Erik Skov, 2023. "Sustainability assessment of new technologies using multi criteria decision making: A framework and application in sectioning end-of-life wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
  27. Peixin Li & Xiaodan Wang & Weijie Chen & Tao Yang & Xiaoya Bian & Xiong Xu, 2024. "Recycling of Retired Wind Turbine Blades into Modifiers for Composite-Modified Asphalt Pavements: Performance Evaluation," Sustainability, MDPI, vol. 16(6), pages 1-15, March.
  28. Sandra Bulińska & Agnieszka Sujak & Michał Pyzalski, 2024. "From Waste to Renewables: Challenges and Opportunities in Recycling Glass Fibre Composite Products from Wind Turbine Blades for Sustainable Cement Production," Sustainability, MDPI, vol. 16(12), pages 1-23, June.
  29. Sandra Sorte & Nelson Martins & Mónica S. A. Oliveira & German L. Vela & Carlos Relvas, 2023. "Unlocking the Potential of Wind Turbine Blade Recycling: Assessing Techniques and Metrics for Sustainability," Energies, MDPI, vol. 16(22), pages 1-28, November.
  30. Beauson, J. & Laurent, A. & Rudolph, D.P. & Pagh Jensen, J., 2022. "The complex end-of-life of wind turbine blades: A review of the European context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  31. Johnston, Barry & Foley, Aoife & Doran, John & Littler, Timothy, 2020. "Levelised cost of energy, A challenge for offshore wind," Renewable Energy, Elsevier, vol. 160(C), pages 876-885.
  32. Mark Sommer & Ina Meyer & Silvia Scherhaufer & Florian Part & Peter Beigl, 2021. "ROSE-Trans – The Role of Secondary Resources in the Austrian Energy Transition," WIFO Studies, WIFO, number 69194.
  33. Ramez Abdallah & Adel Juaidi & Mahmut A. Savaş & Hüseyin Çamur & Aiman Albatayneh & Samer Abdala & Francisco Manzano-Agugliaro, 2021. "RETRACTED: A Critical Review on Recycling Composite Waste Using Pyrolysis for Sustainable Development," Energies, MDPI, vol. 14(18), pages 1-25, September.
  34. Regina Kalpokaitė-Dičkuvienė & Vilma Snapkauskienė, 2025. "Prospects for the Valorization of Wind Turbine Blade Waste: Fiber Recovery and Recycling," Sustainability, MDPI, vol. 17(9), pages 1-24, May.
  35. Mendoza, Joan Manuel F. & Gallego-Schmid, Alejandro & Velenturf, Anne P.M. & Jensen, Paul D. & Ibarra, Dorleta, 2022. "Circular economy business models and technology management strategies in the wind industry: Sustainability potential, industrial challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
  36. Gloria Anna Carallo & Marcello Casa & Conor Kelly & Mohamad Alsaadi, 2025. "Comparative Life Cycle Assessment (LCA) of Traditional and New Sustainable Wind Blade Construction," Sustainability, MDPI, vol. 17(5), pages 1-18, February.
  37. Elia, A. & Taylor, M. & Ó Gallachóir, B. & Rogan, F., 2020. "Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers," Energy Policy, Elsevier, vol. 147(C).
  38. Sobek, Szymon & Schmölzer, Stefan & Mumtaz, Hamza & Sajdak, Marcin & Muzyka, Roksana & Werle, Sebastian, 2025. "Kinetic study of the decommissioned wind turbine blade oxidative liquefaction based on differential scanning calorimetry," Energy, Elsevier, vol. 316(C).
  39. Mulvaney, Dustin & Richards, Ryan M. & Bazilian, Morgan D. & Hensley, Erin & Clough, Greg & Sridhar, Seetharaman, 2021. "Progress towards a circular economy in materials to decarbonize electricity and mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  40. Anne P. M. Velenturf, 2021. "A Framework and Baseline for the Integration of a Sustainable Circular Economy in Offshore Wind," Energies, MDPI, vol. 14(17), pages 1-41, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.