IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i17p7783-d1737394.html
   My bibliography  Save this article

Characterisation of End-of-Life Wind Turbine Blade Components for Structural Repurposing: Experimental and Analytic Prediction Approach

Author

Listed:
  • Philipp Johst

    (Faculty of Engineering, Leipzig University of Applied Sciences (HTWK Leipzig), 04277 Leipzig, Germany)

  • Moritz Bühl

    (Faculty of Engineering, Leipzig University of Applied Sciences (HTWK Leipzig), 04277 Leipzig, Germany)

  • Alann André

    (Chalmers Industriteknik, 412 58 Göteborg, Sweden)

  • Robert Kupfer

    (Institute of Lightweight Engineering and Polymer Technology, Dresden University of Technology, 01307 Dresden, Germany)

  • Richard Protz

    (Institute of Lightweight Engineering and Polymer Technology, Dresden University of Technology, 01307 Dresden, Germany)

  • Niels Modler

    (Institute of Lightweight Engineering and Polymer Technology, Dresden University of Technology, 01307 Dresden, Germany)

  • Robert Böhm

    (Faculty of Engineering, Leipzig University of Applied Sciences (HTWK Leipzig), 04277 Leipzig, Germany)

Abstract

The problem of end-of-life (EoL) fibre-reinforced polymer (FRP) wind turbine blades (WTBs) poses a growing challenge due to the absence of an integrated circular value chain currently available on the market. A key barrier is the information gap between the EoL condition of WTB components and their second-life application requirements. This study addresses this question by focusing on the spar cap, which is an internal structural component with high repurposing potential. A framework has been developed to determine the as-received mechanical properties of spar caps from different EoL WTB models, targeting repurpose in the construction sector. The experimental programme encompasses fibre architecture assessment, calcination processes and mechanical tests in both longitudinal and transverse directions of three different WTB models. Results suggest that the spar caps appear to retain their strength and stiffness, with no evidence of degradation from previous service life. However, notable variation in properties is observed. To account for this, a prediction tool is proposed to estimate the as-received mechanical properties based on practically accessible parameters, thereby supporting decision-making. The results of this study contribute to enabling the repurposing of EoL spar cap beams from the wind energy sector for applications in the construction sector.

Suggested Citation

  • Philipp Johst & Moritz Bühl & Alann André & Robert Kupfer & Richard Protz & Niels Modler & Robert Böhm, 2025. "Characterisation of End-of-Life Wind Turbine Blade Components for Structural Repurposing: Experimental and Analytic Prediction Approach," Sustainability, MDPI, vol. 17(17), pages 1-24, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7783-:d:1737394
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/17/7783/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/17/7783/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alann André & Thomas Bru & Abdul Ghafoor Abbasi & Sugandh Sinha & Stephanie Nunes & Magdalena Juntikka & Karolina Kazmierczak & Nils Ólafur Egilsson & Gustav Frid & Marcin Sobczyk & Reza Haghani, 2024. "A Holistic and Circular Approach for Managing End-of-Service Wind Turbine Blades," Sustainability, MDPI, vol. 16(17), pages 1-17, September.
    2. Jensen, J.P. & Skelton, K., 2018. "Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 165-176.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Haces-Fernandez, 2020. "GoWInD: Wind Energy Spatiotemporal Assessment and Characterization of End-of-Life Activities," Energies, MDPI, vol. 13(22), pages 1-20, November.
    2. Sara Taherinezhad Tayebi & Matteo Sambucci & Marco Valente, 2024. "Waste Management of Wind Turbine Blades: A Comprehensive Review on Available Recycling Technologies with A Focus on Overcoming Potential Environmental Hazards Caused by Microplastic Production," Sustainability, MDPI, vol. 16(11), pages 1-24, May.
    3. Winkler, Lorenz & Kilic, Onur A. & Veldman, Jasper, 2022. "Collaboration in the offshore wind farm decommissioning supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Sandra Sorte & Nelson Martins & Mónica S. A. Oliveira & German L. Vela & Carlos Relvas, 2023. "Unlocking the Potential of Wind Turbine Blade Recycling: Assessing Techniques and Metrics for Sustainability," Energies, MDPI, vol. 16(22), pages 1-28, November.
    5. Regina Kalpokaitė-Dičkuvienė & Vilma Snapkauskienė, 2025. "Prospects for the Valorization of Wind Turbine Blade Waste: Fiber Recovery and Recycling," Sustainability, MDPI, vol. 17(9), pages 1-23, May.
    6. Gloria Anna Carallo & Marcello Casa & Conor Kelly & Mohamad Alsaadi, 2025. "Comparative Life Cycle Assessment (LCA) of Traditional and New Sustainable Wind Blade Construction," Sustainability, MDPI, vol. 17(5), pages 1-18, February.
    7. Elia, A. & Taylor, M. & Ó Gallachóir, B. & Rogan, F., 2020. "Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers," Energy Policy, Elsevier, vol. 147(C).
    8. Emma L. Delaney & Paul G. Leahy & Jennifer M. McKinley & T. Russell Gentry & Angela J. Nagle & Jeffrey Elberling & Lawrence C. Bank, 2023. "Sustainability Implications of Current Approaches to End-of-Life of Wind Turbine Blades—A Review," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    9. Lund, K.W. & Madsen, E.S., 2024. "State-of-the-art value chain roadmap for sustainable end-of-life wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Mário Joel Ramos Júnior & Diego Lima Medeiros & Joyce Batista Azevedo & Edna dos Santos Almeida, 2025. "Wind Turbine Blade Decommissioning in Brazil: The Economic Performance of Energy Recovery in a Cement Kiln Compared to Industrial Landfill Site," Sustainability, MDPI, vol. 17(1), pages 1-22, January.
    11. Beauson, J. & Laurent, A. & Rudolph, D.P. & Pagh Jensen, J., 2022. "The complex end-of-life of wind turbine blades: A review of the European context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Mário Moutinho & Ricardo Rocha & David Atteln & Philipp Johst & Robert Böhm & Konstantina-Roxani Chatzipanagiotou & Evangelia Stamkopoulou & Elias P. Koumoulos & Andreia Araujo, 2025. "Repurposing EoL WTB Components into a Large-Scale PV-Floating Demonstrator," Sustainability, MDPI, vol. 17(19), pages 1-29, September.
    13. Anne P. M. Velenturf, 2021. "A Framework and Baseline for the Integration of a Sustainable Circular Economy in Offshore Wind," Energies, MDPI, vol. 14(17), pages 1-41, September.
    14. Divine Senanu Ametefe & George Dzorgbenya Ametefe & Dah John & Abdulmalik Adozuka Aliu & Macaulay M. Owen & Solehuddin Shuib & Aisha Hamid, 2025. "Energy Generation from Plastic Composites: A Systematic Review of Sustainable Practices and Technologies," Circular Economy and Sustainability, Springer, vol. 5(2), pages 1307-1343, April.
    15. Dongwang Zhang & Zhong Huang & Xiaobei Shi & Xiaofei Sun & Tuo Zhou & Hairui Yang & Rushan Bie & Man Zhang, 2024. "Experimental Study and Process Simulation on Pyrolysis Characteristics of Decommissioned Wind Turbine Blades," Energies, MDPI, vol. 17(13), pages 1-16, July.
    16. Sebastian Sobczuk & Agata Jaroń & Mateusz Mazur & Anna Borucka, 2025. "Renewable Energy and CO 2 Emissions: Analysis of the Life Cycle and Impact on the Ecosystem in the Context of Energy Mix Changes," Energies, MDPI, vol. 18(13), pages 1-35, June.
    17. Mumtaz, Hamza & Sobek, Szymon & Sajdak, Marcin & Muzyka, Roksana & Werle, Sebastian, 2023. "An experimental investigation and process optimization of the oxidative liquefaction process as the recycling method of the end-of-life wind turbine blades," Renewable Energy, Elsevier, vol. 211(C), pages 269-278.
    18. Ramaswamy, Nagesh & Joshi, Bhupendra & Song, Gangbing & Mo, Y.L., 2025. "Repurposing decommissioned wind turbine blades: A circular economy approach to sustainable resource management and infrastructure innovation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    19. Liu, Y. & Hajj, M. & Bao, Y., 2022. "Review of robot-based damage assessment for offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    20. Lund, Kristine Wilhelm & Nielsen, Mikkel Liep & Madsen, Erik Skov, 2023. "Sustainability assessment of new technologies using multi criteria decision making: A framework and application in sectioning end-of-life wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7783-:d:1737394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.