IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3229-d1426750.html
   My bibliography  Save this article

Experimental Study and Process Simulation on Pyrolysis Characteristics of Decommissioned Wind Turbine Blades

Author

Listed:
  • Dongwang Zhang

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Zhong Huang

    (Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Xiaobei Shi

    (Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Xiaofei Sun

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Tuo Zhou

    (Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Hairui Yang

    (Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Rushan Bie

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Man Zhang

    (Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

Abstract

The development of wind power has brought about increasing challenges in decommissioning, among which DWTBs (decommissioned wind turbine blades) are the most difficult component to deal with. To enable the cost-effective, energy-efficient, and environmentally friendly large-scale utilization of DWTBs, an experimental study on thermogravimetric and pyrolysis characteristics of DWTBs was carried out. A new process involving recycling glass fiber with pyrolysis gas re-combustion and flue gas recirculation as the pyrolysis medium was innovatively proposed, and the simulation calculation was carried out. Thermogravimetric experiments indicated that glass fiber reinforced composite (GFRC) was the main heat-generating part in the heat utilization process of blades, and the blade material could basically complete pyrolysis at 600 °C. As the heating rate increased, the formation temperature, peak concentration, and proportion of combustible gas in the pyrolysis gas also increased. The highest peak concentration of CO gas was observed, with CO 2 and C 3 H 6 reaching their peaks at 700 °C. The solid product obtained from pyrolysis at 600 °C could be oxidized at 550 °C for 40 min to obtain clean glass fiber. And the pyrolysis temperature increased with the increase in the proportion of recirculation flue gas. When the proportion of recirculation flue gas was 66%, the pyrolysis temperature could reach 600 °C, meeting the necessary pyrolysis temperature for wind turbine blade materials. The above research provided fundamental data support for further exploration on high-value-added recycling of DWTBs.

Suggested Citation

  • Dongwang Zhang & Zhong Huang & Xiaobei Shi & Xiaofei Sun & Tuo Zhou & Hairui Yang & Rushan Bie & Man Zhang, 2024. "Experimental Study and Process Simulation on Pyrolysis Characteristics of Decommissioned Wind Turbine Blades," Energies, MDPI, vol. 17(13), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3229-:d:1426750
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3229/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3229/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jensen, J.P. & Skelton, K., 2018. "Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 165-176.
    2. Xiao, Ruirui & Yang, Wei & Cong, Xingshun & Dong, Kai & Xu, Jie & Wang, Dengfeng & Yang, Xin, 2020. "Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 201(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Shengxiong & Lei, Can & Qin, Jie & Yi, Cheng & Chen, Tao & Yao, Lingling & Li, Bo & Wen, Yujiao & Zhou, Zhi & Xia, Mao, 2022. "Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration," Energy, Elsevier, vol. 251(C).
    2. Francisco Haces-Fernandez, 2020. "GoWInD: Wind Energy Spatiotemporal Assessment and Characterization of End-of-Life Activities," Energies, MDPI, vol. 13(22), pages 1-20, November.
    3. Sara Taherinezhad Tayebi & Matteo Sambucci & Marco Valente, 2024. "Waste Management of Wind Turbine Blades: A Comprehensive Review on Available Recycling Technologies with A Focus on Overcoming Potential Environmental Hazards Caused by Microplastic Production," Sustainability, MDPI, vol. 16(11), pages 1-24, May.
    4. Winkler, Lorenz & Kilic, Onur A. & Veldman, Jasper, 2022. "Collaboration in the offshore wind farm decommissioning supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Kai-Yen Chin & Angus Shiue & Yi-Jing Wu & Shu-Mei Chang & Yeou-Fong Li & Ming-Yuan Shen & Graham Leggett, 2022. "Studies on Recycling Silane Controllable Recovered Carbon Fiber from Waste CFRP," Sustainability, MDPI, vol. 14(2), pages 1-12, January.
    6. Ma, Junfang & Liu, Jiaxun & Jiang, Xiumin & Zhang, Hai, 2021. "A two-dimensional distributed activation energy model for pyrolysis of solid fuels," Energy, Elsevier, vol. 230(C).
    7. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Niu, Miaomiao & Sun, Rongyue & Ding, Kuan & Gu, Haiming & Cui, Xiaobo & Wang, Liang & Hu, Jichu, 2022. "Synergistic effect on thermal behavior and product characteristics during co-pyrolysis of biomass and waste tire: Influence of biomass species and waste blending ratios," Energy, Elsevier, vol. 240(C).
    9. John Dorrell & Keunjae Lee, 2020. "The Cost of Wind: Negative Economic Effects of Global Wind Energy Development," Energies, MDPI, vol. 13(14), pages 1-25, July.
    10. Zhang, Wenlong & Pan, Rongkun & Wang, Jian & Pei, Bei & Ding, Yanming, 2025. "Accuracy of kinetic parameters in multiple methods for separating multi-step thermal degradation reactions of biomass into single-step reactions," Energy, Elsevier, vol. 314(C).
    11. Sandra Sorte & Nelson Martins & Mónica S. A. Oliveira & German L. Vela & Carlos Relvas, 2023. "Unlocking the Potential of Wind Turbine Blade Recycling: Assessing Techniques and Metrics for Sustainability," Energies, MDPI, vol. 16(22), pages 1-28, November.
    12. Gloria Anna Carallo & Marcello Casa & Conor Kelly & Mohamad Alsaadi, 2025. "Comparative Life Cycle Assessment (LCA) of Traditional and New Sustainable Wind Blade Construction," Sustainability, MDPI, vol. 17(5), pages 1-18, February.
    13. Elia, A. & Taylor, M. & Ó Gallachóir, B. & Rogan, F., 2020. "Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers," Energy Policy, Elsevier, vol. 147(C).
    14. Sobek, Szymon & Schmölzer, Stefan & Mumtaz, Hamza & Sajdak, Marcin & Muzyka, Roksana & Werle, Sebastian, 2025. "Kinetic study of the decommissioned wind turbine blade oxidative liquefaction based on differential scanning calorimetry," Energy, Elsevier, vol. 316(C).
    15. Abdullahi Shagali, Abdulmajid & Hu, Song & Li, Hanjian & He, Limo & Han, Hengda & Chi, Huanying & Qing, Haoran & Xu, Jun & Jiang, Long & Wang, Yi & Su, Sheng & Xiang, Jun, 2023. "Synergistic interactions and co-pyrolysis characteristics of lignocellulosic biomass components and plastic using a fast heating concentrating photothermal TGA system," Renewable Energy, Elsevier, vol. 215(C).
    16. Chong, Cheng Tung & Fan, Yee Van & Lee, Chew Tin & Klemeš, Jiří Jaromír, 2022. "Post COVID-19 ENERGY sustainability and carbon emissions neutrality," Energy, Elsevier, vol. 241(C).
    17. Xu, Jiuping & Liu, Tingting, 2020. "Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development," Energy Policy, Elsevier, vol. 142(C).
    18. Rijo, Bruna & Soares Dias, Ana Paula & Ramos, Marta & de Jesus, Nicole & Puna, Jaime, 2021. "Catalyzed pyrolysis of coffee and tea wastes," Energy, Elsevier, vol. 235(C).
    19. Majewski, Peter & Florin, Nick & Jit, Joytishna & Stewart, Rodney A., 2022. "End-of-life policy considerations for wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    20. Gao, Qi & Ni, Liangmeng & He, Yuyu & Hou, Yanmei & Hu, Wanhe & Liu, Zhijia, 2022. "Effect of hydrothermal pretreatment on deashing and pyrolysis characteristics of bamboo shoot shells," Energy, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3229-:d:1426750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.