IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i2p700-d720829.html
   My bibliography  Save this article

Studies on Recycling Silane Controllable Recovered Carbon Fiber from Waste CFRP

Author

Listed:
  • Kai-Yen Chin

    (Department of Molecular Science and Engineering, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan
    These authors contributed equally to this work.)

  • Angus Shiue

    (Department of Molecular Science and Engineering, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan
    These authors contributed equally to this work.)

  • Yi-Jing Wu

    (Department of Molecular Science and Engineering, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan)

  • Shu-Mei Chang

    (Department of Molecular Science and Engineering, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan)

  • Yeou-Fong Li

    (Department of Civil Engineering, National Taipei University of Technology, Taipei 106, Taiwan)

  • Ming-Yuan Shen

    (Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan)

  • Graham Leggett

    (LI-COR Biosciences, Cambridge CB4 OWS, UK)

Abstract

During the production process of commercial carbon fiber reinforced polymers (CFRPs), a silane coupling agent is added to the carbon fiber at the sizing step as a binder to enhance the product’s physical properties. While improving strength, the silane coupling agent results in a silane residue on recovered carbon fibers (rCF) after recycling, which is a disadvantage when using recovered carbon fibers in the manufacture of new materials. In this study, the rCF is recovered from waste carbon fiber reinforced polymers (CFRPs) from the bicycle industry by a microwave pyrolysis method, applying a short reaction time and in an air atmosphere. Moreover, the rCF are investigated for their surface morphologies and the elements present on the surface. The silicon element content changes with pyrolysis temperature were 0.4, 0.9, and 0.2%, respectively, at 450, 550, and 650 °C. Additionally, at 950 °C, silicon content can be reduced to 0.1 ± 0.05%. The uniformity of microwave pyrolysis recycle treatment was compared with traditional furnace techniques used for bulk waste treatment by applying the same temperature regime. This work provides evidence that microwave pyrolysis can be used as an alternative method for the production of rCFs for reuse applications.

Suggested Citation

  • Kai-Yen Chin & Angus Shiue & Yi-Jing Wu & Shu-Mei Chang & Yeou-Fong Li & Ming-Yuan Shen & Graham Leggett, 2022. "Studies on Recycling Silane Controllable Recovered Carbon Fiber from Waste CFRP," Sustainability, MDPI, vol. 14(2), pages 1-12, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:700-:d:720829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/2/700/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/2/700/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jensen, J.P. & Skelton, K., 2018. "Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 165-176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeou-Fong Li & Walter Chen & Ta-Wui Cheng, 2022. "The Sustainable Composite Materials in Civil and Architectural Engineering," Sustainability, MDPI, vol. 14(4), pages 1-3, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Haces-Fernandez, 2020. "GoWInD: Wind Energy Spatiotemporal Assessment and Characterization of End-of-Life Activities," Energies, MDPI, vol. 13(22), pages 1-20, November.
    2. Sara Taherinezhad Tayebi & Matteo Sambucci & Marco Valente, 2024. "Waste Management of Wind Turbine Blades: A Comprehensive Review on Available Recycling Technologies with A Focus on Overcoming Potential Environmental Hazards Caused by Microplastic Production," Sustainability, MDPI, vol. 16(11), pages 1-24, May.
    3. Winkler, Lorenz & Kilic, Onur A. & Veldman, Jasper, 2022. "Collaboration in the offshore wind farm decommissioning supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Philipp Johst & Moritz Bühl & Alann André & Robert Kupfer & Richard Protz & Niels Modler & Robert Böhm, 2025. "Characterisation of End-of-Life Wind Turbine Blade Components for Structural Repurposing: Experimental and Analytic Prediction Approach," Sustainability, MDPI, vol. 17(17), pages 1-24, August.
    5. Sandra Sorte & Nelson Martins & Mónica S. A. Oliveira & German L. Vela & Carlos Relvas, 2023. "Unlocking the Potential of Wind Turbine Blade Recycling: Assessing Techniques and Metrics for Sustainability," Energies, MDPI, vol. 16(22), pages 1-28, November.
    6. Regina Kalpokaitė-Dičkuvienė & Vilma Snapkauskienė, 2025. "Prospects for the Valorization of Wind Turbine Blade Waste: Fiber Recovery and Recycling," Sustainability, MDPI, vol. 17(9), pages 1-23, May.
    7. Gloria Anna Carallo & Marcello Casa & Conor Kelly & Mohamad Alsaadi, 2025. "Comparative Life Cycle Assessment (LCA) of Traditional and New Sustainable Wind Blade Construction," Sustainability, MDPI, vol. 17(5), pages 1-18, February.
    8. Elia, A. & Taylor, M. & Ó Gallachóir, B. & Rogan, F., 2020. "Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers," Energy Policy, Elsevier, vol. 147(C).
    9. Emma L. Delaney & Paul G. Leahy & Jennifer M. McKinley & T. Russell Gentry & Angela J. Nagle & Jeffrey Elberling & Lawrence C. Bank, 2023. "Sustainability Implications of Current Approaches to End-of-Life of Wind Turbine Blades—A Review," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    10. Lund, K.W. & Madsen, E.S., 2024. "State-of-the-art value chain roadmap for sustainable end-of-life wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    11. Mário Joel Ramos Júnior & Diego Lima Medeiros & Joyce Batista Azevedo & Edna dos Santos Almeida, 2025. "Wind Turbine Blade Decommissioning in Brazil: The Economic Performance of Energy Recovery in a Cement Kiln Compared to Industrial Landfill Site," Sustainability, MDPI, vol. 17(1), pages 1-22, January.
    12. Beauson, J. & Laurent, A. & Rudolph, D.P. & Pagh Jensen, J., 2022. "The complex end-of-life of wind turbine blades: A review of the European context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Mário Moutinho & Ricardo Rocha & David Atteln & Philipp Johst & Robert Böhm & Konstantina-Roxani Chatzipanagiotou & Evangelia Stamkopoulou & Elias P. Koumoulos & Andreia Araujo, 2025. "Repurposing EoL WTB Components into a Large-Scale PV-Floating Demonstrator," Sustainability, MDPI, vol. 17(19), pages 1-29, September.
    14. Anne P. M. Velenturf, 2021. "A Framework and Baseline for the Integration of a Sustainable Circular Economy in Offshore Wind," Energies, MDPI, vol. 14(17), pages 1-41, September.
    15. Divine Senanu Ametefe & George Dzorgbenya Ametefe & Dah John & Abdulmalik Adozuka Aliu & Macaulay M. Owen & Solehuddin Shuib & Aisha Hamid, 2025. "Energy Generation from Plastic Composites: A Systematic Review of Sustainable Practices and Technologies," Circular Economy and Sustainability, Springer, vol. 5(2), pages 1307-1343, April.
    16. Dongwang Zhang & Zhong Huang & Xiaobei Shi & Xiaofei Sun & Tuo Zhou & Hairui Yang & Rushan Bie & Man Zhang, 2024. "Experimental Study and Process Simulation on Pyrolysis Characteristics of Decommissioned Wind Turbine Blades," Energies, MDPI, vol. 17(13), pages 1-16, July.
    17. Sebastian Sobczuk & Agata Jaroń & Mateusz Mazur & Anna Borucka, 2025. "Renewable Energy and CO 2 Emissions: Analysis of the Life Cycle and Impact on the Ecosystem in the Context of Energy Mix Changes," Energies, MDPI, vol. 18(13), pages 1-35, June.
    18. Mumtaz, Hamza & Sobek, Szymon & Sajdak, Marcin & Muzyka, Roksana & Werle, Sebastian, 2023. "An experimental investigation and process optimization of the oxidative liquefaction process as the recycling method of the end-of-life wind turbine blades," Renewable Energy, Elsevier, vol. 211(C), pages 269-278.
    19. Ramaswamy, Nagesh & Joshi, Bhupendra & Song, Gangbing & Mo, Y.L., 2025. "Repurposing decommissioned wind turbine blades: A circular economy approach to sustainable resource management and infrastructure innovation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    20. Liu, Y. & Hajj, M. & Bao, Y., 2022. "Review of robot-based damage assessment for offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:700-:d:720829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.