IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v25y2013icp318-334.html
   My bibliography  Save this item

A literature survey on load–frequency control for conventional and distribution generation power systems

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jung, Jaesung & Onen, Ahmet & Russell, Kevin & Broadwater, Robert P. & Steffel, Steve & Dinkel, Alex, 2015. "Configurable, Hierarchical, Model-based, Scheduling Control with photovoltaic generators in power distribution circuits," Renewable Energy, Elsevier, vol. 76(C), pages 318-329.
  2. Yekui Chang & Rao Liu & Yu Ba & Weidong Li, 2018. "A New Control Logic for a Wind-Area on the Balancing Authority Area Control Error Limit Standard for Load Frequency Control," Energies, MDPI, vol. 11(1), pages 1-20, January.
  3. Liangcheng Cai, 2019. "Simultaneous Power Flow Decouple and Converter Gain Design for Electric Vehicle to Grid System," Energies, MDPI, vol. 12(6), pages 1-16, March.
  4. Shan, Kui & Wang, Shengwei & Zhuang, Chaoqun, 2021. "Controlling a large constant speed centrifugal chiller to provide grid frequency regulation: A validation based on onsite tests," Applied Energy, Elsevier, vol. 300(C).
  5. Yicong Wang & Chang Liu & Ji Han & Haoyu Tan & Fangchao Ke & Dongyin Zhang & Cong Wei & Shihong Miao, 2022. "A Distributed Frequency Regulation Method for Multi-Area Power System Considering Optimization of Communication Structure," Energies, MDPI, vol. 15(18), pages 1-18, September.
  6. Mokhtar Aly & Emad A. Mohamed & Abdullah M. Noman & Emad M. Ahmed & Fayez F. M. El-Sousy & Masayuki Watanabe, 2023. "Optimized Non-Integer Load Frequency Control Scheme for Interconnected Microgrids in Remote Areas with High Renewable Energy and Electric Vehicle Penetrations," Mathematics, MDPI, vol. 11(9), pages 1-31, April.
  7. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose-Ignacio Sarasua, 2020. "Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
  8. Emad M. Ahmed & Ali Selim & Hammad Alnuman & Waleed Alhosaini & Mokhtar Aly & Emad A. Mohamed, 2022. "Modified Frequency Regulator Based on TI λ -TD μ FF Controller for Interconnected Microgrids with Incorporating Hybrid Renewable Energy Sources," Mathematics, MDPI, vol. 11(1), pages 1-39, December.
  9. Emad A. Mohamed & Mokhtar Aly & Masayuki Watanabe, 2022. "New Tilt Fractional-Order Integral Derivative with Fractional Filter (TFOIDFF) Controller with Artificial Hummingbird Optimizer for LFC in Renewable Energy Power Grids," Mathematics, MDPI, vol. 10(16), pages 1-33, August.
  10. Singh, Bindeshwar & Mukherjee, V. & Tiwari, Prabhakar, 2015. "A survey on impact assessment of DG and FACTS controllers in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 846-882.
  11. Mo, Hua-Dong & Li, Yan-Fu & Zio, Enrico, 2016. "A system-of-systems framework for the reliability analysis of distributed generation systems accounting for the impact of degraded communication networks," Applied Energy, Elsevier, vol. 183(C), pages 805-822.
  12. Salas, V. & Suponthana, W. & Salas, R.A., 2015. "Overview of the off-grid photovoltaic diesel batteries systems with AC loads," Applied Energy, Elsevier, vol. 157(C), pages 195-216.
  13. Narendra Kumar Jena & Subhadra Sahoo & Binod Kumar Sahu & Amiya Kumar Naik & Mohit Bajaj & Stanislav Misak & Vojtech Blazek & Lukas Prokop, 2023. "Impact of a Redox Flow Battery on the Frequency Stability of a Five-Area System Integrated with Renewable Sources," Energies, MDPI, vol. 16(14), pages 1-29, July.
  14. Hongyue Li & Xihuai Wang & Jianmei Xiao, 2018. "Differential Evolution-Based Load Frequency Robust Control for Micro-Grids with Energy Storage Systems," Energies, MDPI, vol. 11(7), pages 1-19, June.
  15. Pappachen, Abhijith & Peer Fathima, A., 2017. "Critical research areas on load frequency control issues in a deregulated power system: A state-of-the-art-of-review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 163-177.
  16. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
  17. Tang, Yi & Li, Feng & Chen, Qian & Li, Mengya & Wang, Qi & Ni, Ming & Chen, Gang, 2018. "Frequency prediction method considering demand response aggregate characteristics and control effects," Applied Energy, Elsevier, vol. 229(C), pages 936-944.
  18. Guo, Wencheng & Yang, Jiandong, 2018. "Modeling and dynamic response control for primary frequency regulation of hydro-turbine governing system with surge tank," Renewable Energy, Elsevier, vol. 121(C), pages 173-187.
  19. Urtasun, Andoni & Sanchis, Pablo & Barricarte, David & Marroyo, Luis, 2014. "Energy management strategy for a battery-diesel stand-alone system with distributed PV generation based on grid frequency modulation," Renewable Energy, Elsevier, vol. 66(C), pages 325-336.
  20. Xiao Qi & Yan Bai & Huanhuan Luo & Yiqing Zhang & Guiping Zhou & Zhonghua Wei, 2018. "Fully-distributed Load Frequency Control Strategy in an Islanded Microgrid Considering Plug-In Electric Vehicles," Energies, MDPI, vol. 11(6), pages 1-18, June.
  21. Lakshmanan, Venkatachalam & Marinelli, Mattia & Hu, Junjie & Bindner, Henrik W., 2016. "Provision of secondary frequency control via demand response activation on thermostatically controlled loads: Solutions and experiences from Denmark," Applied Energy, Elsevier, vol. 173(C), pages 470-480.
  22. Nagendra Kumar & Majed A. Alotaibi & Akhilesh Singh & Hasmat Malik & Mohammed E. Nassar, 2022. "Application of Fractional Order-PID Control Scheme in Automatic Generation Control of a Deregulated Power System in the Presence of SMES Unit," Mathematics, MDPI, vol. 10(3), pages 1-16, February.
  23. Tsao, Yu-Chung & Thanh, Vo-Van & Lu, Jye-Chyi, 2021. "Sustainable advanced distribution management system design considering differential pricing schemes and carbon emissions," Energy, Elsevier, vol. 219(C).
  24. Eleftherios Vlahakis & Leonidas Dritsas & George Halikias, 2019. "Distributed LQR Design for a Class of Large-Scale Multi-Area Power Systems," Energies, MDPI, vol. 12(14), pages 1-28, July.
  25. Xiao Qi & Yan Bai, 2017. "Improved Linear Active Disturbance Rejection Control for Microgrid Frequency Regulation," Energies, MDPI, vol. 10(7), pages 1-20, July.
  26. Farhadi Kangarlu, Mohammad & Alizadeh Pahlavani, Mohammad Reza, 2014. "Cascaded multilevel converter based superconducting magnetic energy storage system for frequency control," Energy, Elsevier, vol. 70(C), pages 504-513.
  27. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
  28. Ashraf Khalil & Ang Swee Peng, 2018. "A New Method for Computing the Delay Margin for the Stability of Load Frequency Control Systems," Energies, MDPI, vol. 11(12), pages 1-18, December.
  29. Mai Inoue & Yutaka Genchi & Yuki Kudoh, 2017. "Evaluating the Potential of Variable Renewable Energy for a Balanced Isolated Grid: A Japanese Case Study," Sustainability, MDPI, vol. 9(1), pages 1-15, January.
  30. Talari, Saber & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "Stochastic modelling of renewable energy sources from operators' point-of-view: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1953-1965.
  31. Athira M. Mohan & Nader Meskin & Hasan Mehrjerdi, 2020. "A Comprehensive Review of the Cyber-Attacks and Cyber-Security on Load Frequency Control of Power Systems," Energies, MDPI, vol. 13(15), pages 1-33, July.
  32. Ellen Webborn & Robert S. MacKay, 2017. "A Stability Analysis of Thermostatically Controlled Loads for Power System Frequency Control," Complexity, Hindawi, vol. 2017, pages 1-26, December.
  33. Rajan, Rijo & Fernandez, Francis M. & Yang, Yongheng, 2021. "Primary frequency control techniques for large-scale PV-integrated power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  34. Mbuli, N. & Ngaha, W.S., 2022. "A survey of big bang big crunch optimisation in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  35. Hassan Haes Alhelou & Mohamad-Esmail Hamedani-Golshan & Reza Zamani & Ehsan Heydarian-Forushani & Pierluigi Siano, 2018. "Challenges and Opportunities of Load Frequency Control in Conventional, Modern and Future Smart Power Systems: A Comprehensive Review," Energies, MDPI, vol. 11(10), pages 1-35, September.
  36. Guo-Qiang Zeng & Xiao-Qing Xie & Min-Rong Chen, 2017. "An Adaptive Model Predictive Load Frequency Control Method for Multi-Area Interconnected Power Systems with Photovoltaic Generations," Energies, MDPI, vol. 10(11), pages 1-23, November.
  37. Huan Wang & Guoqiang Zeng & Yuxing Dai & Daqiang Bi & Jingliao Sun & Xiaoqing Xie, 2017. "Design of a Fractional Order Frequency PID Controller for an Islanded Microgrid: A Multi-Objective Extremal Optimization Method," Energies, MDPI, vol. 10(10), pages 1-18, October.
  38. Chunyu Chen & Kaifeng Zhang & Kun Yuan & Xianliang Teng, 2017. "Tie-Line Bias Control Applicability to Load Frequency Control for Multi-Area Interconnected Power Systems of Complex Topology," Energies, MDPI, vol. 10(1), pages 1-15, January.
  39. Shankar, Ravi & Pradhan, S.R. & Chatterjee, Kalyan & Mandal, Rajasi, 2017. "A comprehensive state of the art literature survey on LFC mechanism for power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1185-1207.
  40. Farag K. Abo-Elyousr & Hossam S. Abbas & Ali M. Yousef & Nguyen Vu Quynh & Ziad M. Ali & Muhammad Shahzad Nazir, 2020. "Oscillation Damping for Wind Energy Conversion System with Doubly Fed Induction Generator Association with Synchronous Generator," Energies, MDPI, vol. 13(19), pages 1-18, September.
  41. Anh-Tuan Tran & Bui Le Ngoc Minh & Van Van Huynh & Phong Thanh Tran & Emmanuel Nduka Amaefule & Van-Duc Phan & Tam Minh Nguyen, 2021. "Load Frequency Regulator in Interconnected Power System Using Second-Order Sliding Mode Control Combined with State Estimator," Energies, MDPI, vol. 14(4), pages 1-17, February.
  42. Soha Mansour & Ahmed O. Badr & Mahmoud A. Attia & Mariam A. Sameh & Hossam Kotb & Elmazeg Elgamli & Mokhtar Shouran, 2022. "Fuzzy Logic Controller Equilibrium Base to Enhance AGC System Performance with Renewable Energy Disturbances," Energies, MDPI, vol. 15(18), pages 1-18, September.
  43. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
  44. Shangguan, Xing-Chen & He, Yong & Zhang, Chuan-Ke & Jiang, Lin & Wu, Min, 2022. "Load frequency control of time-delayed power system based on event-triggered communication scheme," Applied Energy, Elsevier, vol. 308(C).
  45. Shang-Guan, Xingchen & He, Yong & Zhang, Chuanke & Jiang, Lin & Spencer, Joseph William & Wu, Min, 2020. "Sampled-data based discrete and fast load frequency control for power systems with wind power," Applied Energy, Elsevier, vol. 259(C).
  46. Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.
  47. Dehghanpour, Kaveh & Afsharnia, Saeed, 2015. "Electrical demand side contribution to frequency control in power systems: a review on technical aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1267-1276.
  48. Kumar, N.J. Vinoth & Thameem Ansari, M. Mohamed, 2015. "A new design of dual-mode Type-II fuzzy logic load frequency controller for interconnected power systems with parallel AC–DC tie-lines and superconducting magnetic energy storage unit," Energy, Elsevier, vol. 89(C), pages 118-137.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.