IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5540-d1199809.html
   My bibliography  Save this article

Impact of a Redox Flow Battery on the Frequency Stability of a Five-Area System Integrated with Renewable Sources

Author

Listed:
  • Narendra Kumar Jena

    (Department of Electrical Engineering, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751024, India)

  • Subhadra Sahoo

    (Department of Electrical Engineering, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751024, India)

  • Binod Kumar Sahu

    (Department of Electrical Engineering, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751024, India)

  • Amiya Kumar Naik

    (Department of Electrical Engineering, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751024, India)

  • Mohit Bajaj

    (Department of Electrical Engineering, Graphic Era (Deemed to be University), Dehradun 248002, India
    Department of Electrical Engineering, Graphic Era Hill University, Dehradun 248002, India
    Applied Science Research Center, Applied Science Private University, Amman 11937, Jordan)

  • Stanislav Misak

    (ENET Centre, VSB—Technical University of Ostrava, 70800 Ostrava, Czech Republic)

  • Vojtech Blazek

    (ENET Centre, VSB—Technical University of Ostrava, 70800 Ostrava, Czech Republic)

  • Lukas Prokop

    (ENET Centre, VSB—Technical University of Ostrava, 70800 Ostrava, Czech Republic)

Abstract

Energy storage devices are imperative to damp out the oscillations caused by sudden magnified disturbances occurring in a power system. The presence of a small rating of storage device in each area can alleviate the system oscillations effectively. Therefore, in this work, redox flow batteries (RFBs) have been integrated in each area of a five-area interconnected system for effective load frequency control (LFC). The RFB pumps up the active power into the system quickly to meet the short-time overload; in turn, the efficacy of the LFC in the system is boosted. Despite the presence of the RFB in the power system, a secondary controller is necessary to quench the deviation of frequency and tie-line power caused by the power mismatch between demand and generation. In this perspective, a cascade controller incorporated with a fractional operator (FO) has been endorsed and designed through a nascent selfish herd optimizer technique to evaluate the transient response of the system. Besides this, the unprecedented performance of fractional-order cascade controllers has been compared with one-stage classical controllers with and without a fractional operator. Further, the robustness of the proposed controller has been inspected through subjecting it to a random load in the presence/absence of an RFB and parametric variation. Finally, the proposed model has been simulated in the OPAL-RT-4510 platform to validate the performance of the proposed controller that has produced in the MATLAB environment.

Suggested Citation

  • Narendra Kumar Jena & Subhadra Sahoo & Binod Kumar Sahu & Amiya Kumar Naik & Mohit Bajaj & Stanislav Misak & Vojtech Blazek & Lukas Prokop, 2023. "Impact of a Redox Flow Battery on the Frequency Stability of a Five-Area System Integrated with Renewable Sources," Energies, MDPI, vol. 16(14), pages 1-29, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5540-:d:1199809
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5540/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5540/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pandey, Shashi Kant & Mohanty, Soumya R. & Kishor, Nand, 2013. "A literature survey on load–frequency control for conventional and distribution generation power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 318-334.
    2. Aswathy Joseph & Jolanta Sobczak & Gaweł Żyła & Suresh Mathew, 2022. "Ionic Liquid and Ionanofluid-Based Redox Flow Batteries—A Mini Review," Energies, MDPI, vol. 15(13), pages 1-15, June.
    3. Arya, Yogendra, 2017. "AGC performance enrichment of multi-source hydrothermal gas power systems using new optimized FOFPID controller and redox flow batteries," Energy, Elsevier, vol. 127(C), pages 704-715.
    4. Selvaraju, Ramesh Kumar & Somaskandan, Ganapathy, 2016. "Impact of energy storage units on load frequency control of deregulated power systems," Energy, Elsevier, vol. 97(C), pages 214-228.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan Haes Alhelou & Mohamad-Esmail Hamedani-Golshan & Reza Zamani & Ehsan Heydarian-Forushani & Pierluigi Siano, 2018. "Challenges and Opportunities of Load Frequency Control in Conventional, Modern and Future Smart Power Systems: A Comprehensive Review," Energies, MDPI, vol. 11(10), pages 1-35, September.
    2. Dhundhara, Sandeep & Verma, Yajvender Pal, 2018. "Capacitive energy storage with optimized controller for frequency regulation in realistic multisource deregulated power system," Energy, Elsevier, vol. 147(C), pages 1108-1128.
    3. Shan, Kui & Wang, Shengwei & Zhuang, Chaoqun, 2021. "Controlling a large constant speed centrifugal chiller to provide grid frequency regulation: A validation based on onsite tests," Applied Energy, Elsevier, vol. 300(C).
    4. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Eleftherios Vlahakis & Leonidas Dritsas & George Halikias, 2019. "Distributed LQR Design for a Class of Large-Scale Multi-Area Power Systems," Energies, MDPI, vol. 12(14), pages 1-28, July.
    6. Athira M. Mohan & Nader Meskin & Hasan Mehrjerdi, 2020. "A Comprehensive Review of the Cyber-Attacks and Cyber-Security on Load Frequency Control of Power Systems," Energies, MDPI, vol. 13(15), pages 1-33, July.
    7. Anh-Tuan Tran & Bui Le Ngoc Minh & Van Van Huynh & Phong Thanh Tran & Emmanuel Nduka Amaefule & Van-Duc Phan & Tam Minh Nguyen, 2021. "Load Frequency Regulator in Interconnected Power System Using Second-Order Sliding Mode Control Combined with State Estimator," Energies, MDPI, vol. 14(4), pages 1-17, February.
    8. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    9. Singh, Bindeshwar & Mukherjee, V. & Tiwari, Prabhakar, 2015. "A survey on impact assessment of DG and FACTS controllers in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 846-882.
    10. Tang, Yi & Li, Feng & Chen, Qian & Li, Mengya & Wang, Qi & Ni, Ming & Chen, Gang, 2018. "Frequency prediction method considering demand response aggregate characteristics and control effects," Applied Energy, Elsevier, vol. 229(C), pages 936-944.
    11. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Stochastic risk-averse coordinated scheduling of grid integrated energy storage units in transmission constrained wind-thermal systems within a conditional value-at-risk framework," Energy, Elsevier, vol. 113(C), pages 762-775.
    12. Bashar Abbas Fadheel & Noor Izzri Abdul Wahab & Ali Jafer Mahdi & Manoharan Premkumar & Mohd Amran Bin Mohd Radzi & Azura Binti Che Soh & Veerapandiyan Veerasamy & Andrew Xavier Raj Irudayaraj, 2023. "A Hybrid Grey Wolf Assisted-Sparrow Search Algorithm for Frequency Control of RE Integrated System," Energies, MDPI, vol. 16(3), pages 1-28, January.
    13. Chunyu Chen & Kaifeng Zhang & Kun Yuan & Xianliang Teng, 2017. "Tie-Line Bias Control Applicability to Load Frequency Control for Multi-Area Interconnected Power Systems of Complex Topology," Energies, MDPI, vol. 10(1), pages 1-15, January.
    14. Shangguan, Xing-Chen & He, Yong & Zhang, Chuan-Ke & Jiang, Lin & Wu, Min, 2022. "Load frequency control of time-delayed power system based on event-triggered communication scheme," Applied Energy, Elsevier, vol. 308(C).
    15. Kumar, N.J. Vinoth & Thameem Ansari, M. Mohamed, 2015. "A new design of dual-mode Type-II fuzzy logic load frequency controller for interconnected power systems with parallel AC–DC tie-lines and superconducting magnetic energy storage unit," Energy, Elsevier, vol. 89(C), pages 118-137.
    16. Arindita Saha & Puja Dash & Naladi Ram Babu & Tirumalasetty Chiranjeevi & Mudadla Dhananjaya & Łukasz Knypiński, 2022. "Dynamic Stability Evaluation of an Integrated Biodiesel-Geothermal Power Plant-Based Power System with Spotted Hyena Optimized Cascade Controller," Sustainability, MDPI, vol. 14(22), pages 1-26, November.
    17. Salas, V. & Suponthana, W. & Salas, R.A., 2015. "Overview of the off-grid photovoltaic diesel batteries systems with AC loads," Applied Energy, Elsevier, vol. 157(C), pages 195-216.
    18. Hongyue Li & Xihuai Wang & Jianmei Xiao, 2018. "Differential Evolution-Based Load Frequency Robust Control for Micro-Grids with Energy Storage Systems," Energies, MDPI, vol. 11(7), pages 1-19, June.
    19. Guo, Wencheng & Yang, Jiandong, 2018. "Modeling and dynamic response control for primary frequency regulation of hydro-turbine governing system with surge tank," Renewable Energy, Elsevier, vol. 121(C), pages 173-187.
    20. Urtasun, Andoni & Sanchis, Pablo & Barricarte, David & Marroyo, Luis, 2014. "Energy management strategy for a battery-diesel stand-alone system with distributed PV generation based on grid frequency modulation," Renewable Energy, Elsevier, vol. 66(C), pages 325-336.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5540-:d:1199809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.