IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v127y2017icp704-715.html
   My bibliography  Save this article

AGC performance enrichment of multi-source hydrothermal gas power systems using new optimized FOFPID controller and redox flow batteries

Author

Listed:
  • Arya, Yogendra

Abstract

Redox flow batteries (RFB) showcase extremely long charge-discharge life cycle and outstanding quick response to alleviate the oscillations under sudden disturbances in power system. The assimilation of energy storage units in power system can curtail the oscillations energetically by contributing fast active power compensation. Hence, in this paper, RFB are tried to integrate into multi-source power systems and their efficacy in boosting automatic generation control (AGC) performance is executed. A new fractional order fuzzy PID (FOFPID) controller is employed to enhance the system performance. FOFPID controller parameters are optimized maidenly by utilizing imperialist competitive algorithm (ICA). The controller is designed and implemented on more realistic single/two-area multi-source hydrothermal gas system with/without RFB. The potency of FOFPID is established by contrasting its responses with optimal and lately developed hSFS-PS, DE, TLBO and IPSO optimized controllers. To check the efficacy of the approach, the study is further conducted under the presence of important non-linearites like GDB and GRC. Analysis of results reveals that the advocated approach with/without RFB improves the system performance significantly in comparison to the prevalent methods. The robustness of the method is demonstrated against wide variations in system parameters under the presence/absence of RFB/GDB-GRC and at higher and variable step load demands.

Suggested Citation

  • Arya, Yogendra, 2017. "AGC performance enrichment of multi-source hydrothermal gas power systems using new optimized FOFPID controller and redox flow batteries," Energy, Elsevier, vol. 127(C), pages 704-715.
  • Handle: RePEc:eee:energy:v:127:y:2017:i:c:p:704-715
    DOI: 10.1016/j.energy.2017.03.129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217305212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.03.129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamed Thameem Ansari, M. & Velusami, S., 2010. "DMLHFLC (Dual mode linguistic hedge fuzzy logic controller) for an isolated wind–diesel hybrid power system with BES (battery energy storage) unit," Energy, Elsevier, vol. 35(9), pages 3827-3837.
    2. Selvaraju, Ramesh Kumar & Somaskandan, Ganapathy, 2016. "Impact of energy storage units on load frequency control of deregulated power systems," Energy, Elsevier, vol. 97(C), pages 214-228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nandakumar Sundararaju & Arangarajan Vinayagam & Veerapandiyan Veerasamy & Gunasekaran Subramaniam, 2022. "A Chaotic Search-Based Hybrid Optimization Technique for Automatic Load Frequency Control of a Renewable Energy Integrated Power System," Sustainability, MDPI, vol. 14(9), pages 1-27, May.
    2. Arindita Saha & Puja Dash & Naladi Ram Babu & Tirumalasetty Chiranjeevi & Mudadla Dhananjaya & Łukasz Knypiński, 2022. "Dynamic Stability Evaluation of an Integrated Biodiesel-Geothermal Power Plant-Based Power System with Spotted Hyena Optimized Cascade Controller," Sustainability, MDPI, vol. 14(22), pages 1-26, November.
    3. Narendra Kumar Jena & Subhadra Sahoo & Binod Kumar Sahu & Amiya Kumar Naik & Mohit Bajaj & Stanislav Misak & Vojtech Blazek & Lukas Prokop, 2023. "Impact of a Redox Flow Battery on the Frequency Stability of a Five-Area System Integrated with Renewable Sources," Energies, MDPI, vol. 16(14), pages 1-29, July.
    4. Balvinder Singh & Adam Slowik & Shree Krishna Bishnoi, 2022. "A Dual-Stage Controller for Frequency Regulation in a Two-Area Realistic Diverse Hybrid Power System Using Bull–Lion Optimization," Energies, MDPI, vol. 15(21), pages 1-24, October.
    5. Sun, Hong & Yu, Mingfu & Li, Qiang & Zhuang, Kaiming & Li, Jie & Almheiri, Saif & Zhang, Xiaochen, 2019. "Characteristics of charge/discharge and alternating current impedance in all-vanadium redox flow batteries," Energy, Elsevier, vol. 168(C), pages 693-701.
    6. Bashar Abbas Fadheel & Noor Izzri Abdul Wahab & Ali Jafer Mahdi & Manoharan Premkumar & Mohd Amran Bin Mohd Radzi & Azura Binti Che Soh & Veerapandiyan Veerasamy & Andrew Xavier Raj Irudayaraj, 2023. "A Hybrid Grey Wolf Assisted-Sparrow Search Algorithm for Frequency Control of RE Integrated System," Energies, MDPI, vol. 16(3), pages 1-28, January.
    7. Dhundhara, Sandeep & Verma, Yajvender Pal, 2018. "Capacitive energy storage with optimized controller for frequency regulation in realistic multisource deregulated power system," Energy, Elsevier, vol. 147(C), pages 1108-1128.
    8. Yin, Linfei & Gao, Qi & Zhao, Lulin & Wang, Tao, 2020. "Expandable deep learning for real-time economic generation dispatch and control of three-state energies based future smart grids," Energy, Elsevier, vol. 191(C).
    9. Hassan Haes Alhelou & Mohamad-Esmail Hamedani-Golshan & Reza Zamani & Ehsan Heydarian-Forushani & Pierluigi Siano, 2018. "Challenges and Opportunities of Load Frequency Control in Conventional, Modern and Future Smart Power Systems: A Comprehensive Review," Energies, MDPI, vol. 11(10), pages 1-35, September.
    10. Arya, Yogendra, 2019. "AGC of PV-thermal and hydro-thermal power systems using CES and a new multi-stage FPIDF-(1+PI) controller," Renewable Energy, Elsevier, vol. 134(C), pages 796-806.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    2. Narendra Kumar Jena & Subhadra Sahoo & Binod Kumar Sahu & Amiya Kumar Naik & Mohit Bajaj & Stanislav Misak & Vojtech Blazek & Lukas Prokop, 2023. "Impact of a Redox Flow Battery on the Frequency Stability of a Five-Area System Integrated with Renewable Sources," Energies, MDPI, vol. 16(14), pages 1-29, July.
    3. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Stochastic risk-averse coordinated scheduling of grid integrated energy storage units in transmission constrained wind-thermal systems within a conditional value-at-risk framework," Energy, Elsevier, vol. 113(C), pages 762-775.
    4. Redha, Adel Mohammed & Dincer, Ibrahim & Gadalla, Mohamed, 2011. "Thermodynamic performance assessment of wind energy systems: An application," Energy, Elsevier, vol. 36(7), pages 4002-4010.
    5. Kumar, N.J. Vinoth & Thameem Ansari, M. Mohamed, 2015. "A new design of dual-mode Type-II fuzzy logic load frequency controller for interconnected power systems with parallel AC–DC tie-lines and superconducting magnetic energy storage unit," Energy, Elsevier, vol. 89(C), pages 118-137.
    6. Tareen, Wajahat Ullah & Mekhilef, Saad, 2016. "Transformer-less 3P3W SAPF (three-phase three-wire shunt active power filter) with line-interactive UPS (uninterruptible power supply) and battery energy storage stage," Energy, Elsevier, vol. 109(C), pages 525-536.
    7. Viktor Elistratov & Mikhail Konishchev & Roman Denisov & Inna Bogun & Aki Grönman & Teemu Turunen-Saaresti & Afonso Julian Lugo, 2021. "Study of the Intelligent Control and Modes of the Arctic-Adopted Wind–Diesel Hybrid System," Energies, MDPI, vol. 14(14), pages 1-14, July.
    8. Mitul Ranjan Chakraborty & Subhojit Dawn & Pradip Kumar Saha & Jayanta Bhusan Basu & Taha Selim Ustun, 2022. "System Profit Improvement of a Thermal–Wind–CAES Hybrid System Considering Imbalance Cost in the Electricity Market," Energies, MDPI, vol. 15(24), pages 1-25, December.
    9. Hossam Hassan Ali & Ahmed Fathy & Abdullah M. Al-Shaalan & Ahmed M. Kassem & Hassan M. H. Farh & Abdullrahman A. Al-Shamma’a & Hossam A. Gabbar, 2021. "A Novel Sooty Terns Algorithm for Deregulated MPC-LFC Installed in Multi-Interconnected System with Renewable Energy Plants," Energies, MDPI, vol. 14(17), pages 1-27, August.
    10. Song, Ziyou & Hou, Jun & Xu, Shaobing & Ouyang, Minggao & Li, Jianqiu, 2017. "The influence of driving cycle characteristics on the integrated optimization of hybrid energy storage system for electric city buses," Energy, Elsevier, vol. 135(C), pages 91-100.
    11. Mahto, Tarkeshwar & Mukherjee, V., 2017. "A novel scaling factor based fuzzy logic controller for frequency control of an isolated hybrid power system," Energy, Elsevier, vol. 130(C), pages 339-350.
    12. Jicheng Liu & Dandan He, 2018. "Profit Allocation of Hybrid Power System Planning in Energy Internet: A Cooperative Game Study," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    13. Lisa Gerlach & Thilo Bocklisch, 2021. "Experts versus Algorithms? Optimized Fuzzy Logic Energy Management of Autonomous PV Hybrid Systems with Battery and H 2 Storage," Energies, MDPI, vol. 14(6), pages 1-28, March.
    14. Ajay Kumar & Deepak Kumar Gupta & Sriparna Roy Ghatak & Bhargav Appasani & Nicu Bizon & Phatiphat Thounthong, 2022. "A Novel Improved GSA-BPSO Driven PID Controller for Load Frequency Control of Multi-Source Deregulated Power System," Mathematics, MDPI, vol. 10(18), pages 1-41, September.
    15. Mitul Ranjan Chakraborty & Subhojit Dawn & Pradip Kumar Saha & Jayanta Bhusan Basu & Taha Selim Ustun, 2023. "System Economy Improvement and Risk Shortening by Fuel Cell-UPFC Placement in a Wind-Combined System," Energies, MDPI, vol. 16(4), pages 1-30, February.
    16. Li, Jianwei & Yang, Qingqing & Robinson, Francis. & Liang, Fei & Zhang, Min & Yuan, Weijia, 2017. "Design and test of a new droop control algorithm for a SMES/battery hybrid energy storage system," Energy, Elsevier, vol. 118(C), pages 1110-1122.
    17. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    18. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2455-2470.
    19. Virulkar, Vasudeo & Aware, Mohan & Kolhe, Mohan, 2011. "Integrated battery controller for distributed energy system," Energy, Elsevier, vol. 36(5), pages 2392-2398.
    20. Howlader, Abdul Motin & Izumi, Yuya & Uehara, Akie & Urasaki, Naomitsu & Senjyu, Tomonobu & Yona, Atsushi & Saber, Ahmed Yousuf, 2012. "A minimal order observer based frequency control strategy for an integrated wind-battery-diesel power system," Energy, Elsevier, vol. 46(1), pages 168-178.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:127:y:2017:i:c:p:704-715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.