IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1621-d1059504.html
   My bibliography  Save this article

System Economy Improvement and Risk Shortening by Fuel Cell-UPFC Placement in a Wind-Combined System

Author

Listed:
  • Mitul Ranjan Chakraborty

    (Department of Electrical Engineering, Siliguri Institute of Technology, Siliguri 734009, West Bengal, India)

  • Subhojit Dawn

    (Department of Electrical & Electronics Engineering, Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada 520007, Andhra Pradesh, India)

  • Pradip Kumar Saha

    (Department of Electrical Engineering, Jalpaiguri Government Engineering College, Jalpaiguri 735102, West Bengal, India)

  • Jayanta Bhusan Basu

    (Department of Electrical Engineering, Siliguri Institute of Technology, Siliguri 734009, West Bengal, India)

  • Taha Selim Ustun

    (Fukushima Renewable Energy Institute, AIST (FREA), Koriyama 963-0298, Japan)

Abstract

It is important to understand the features of an integrated renewable energy power system, especially for deregulated systems. The greatest obstacle to assimilating renewable energy generators with the existing electrical system is their unpredictability. Because wind energy is inconsistent, incorporating it into an established power system necessitates more planning. The effects of wind farm (WF) incorporation with fuel cells and a unified power flow controller (UPFC) on electric losses, voltage profile, generating price, and the economics of the system in a deregulated power market are examined in this paper. An impact analysis of integrating wind farms into controlled and uncontrolled situations is conducted. At two randomly selected locations in India, the real-time statistics of the actual wind speed (AWS) and forecasted wind speed (FWS) were merged for this study. The surplus charge rate and deficit charge rate are intended to evaluate the imbalance cost which is arising from the difference between anticipated and true wind speeds to determine the economics of the system. Customers are always trying to find electricity that is reliable, inexpensive, and efficient due to the reconfiguration of the power system. As a consequence, the security limitations of the system may be surpassed or might function beyond the safety limit, which is undesirable. In the last section, heuristic algorithms, such as sequential quadratic programming (SQP), artificial bee colony algorithms (ABC), and moth-flame optimization algorithms (MFO), are employed to analyze economic risk. In the real-time energy market, it also covers how the fuel cells and UPFC are utilized to rectify the WF integration’s deviation. Economic risk evaluation approaches include value-at-risk (VaR) and conditional value-at-risk (CVaR). A modified IEEE 30-bus test system is used throughout the whole project.

Suggested Citation

  • Mitul Ranjan Chakraborty & Subhojit Dawn & Pradip Kumar Saha & Jayanta Bhusan Basu & Taha Selim Ustun, 2023. "System Economy Improvement and Risk Shortening by Fuel Cell-UPFC Placement in a Wind-Combined System," Energies, MDPI, vol. 16(4), pages 1-30, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1621-:d:1059504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1621/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1621/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Umut Ugurlu & Oktay Tas & Aycan Kaya & Ilkay Oksuz, 2018. "The Financial Effect of the Electricity Price Forecasts’ Inaccuracy on a Hydro-Based Generation Company," Energies, MDPI, vol. 11(8), pages 1-19, August.
    2. Anurag Chauhan & Subho Upadhyay & Mohd. Tauseef Khan & S. M. Suhail Hussain & Taha Selim Ustun, 2021. "Performance Investigation of a Solar Photovoltaic/Diesel Generator Based Hybrid System with Cycle Charging Strategy Using BBO Algorithm," Sustainability, MDPI, vol. 13(14), pages 1-17, July.
    3. Israfil Hussain & Dulal Chandra Das & Nidul Sinha & Abdul Latif & S. M. Suhail Hussain & Taha Selim Ustun, 2020. "Performance Assessment of an Islanded Hybrid Power System with Different Storage Combinations Using an FPA-Tuned Two-Degree-of-Freedom (2DOF) Controller," Energies, MDPI, vol. 13(21), pages 1-20, October.
    4. Dufo-López, Rodolfo & Bernal-Agustín, José L. & Contreras, Javier, 2007. "Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage," Renewable Energy, Elsevier, vol. 32(7), pages 1102-1126.
    5. Ahmed Fathy & Ahmed Kassem & Zaki A. Zaki, 2022. "A Robust Artificial Bee Colony-Based Load Frequency Control for Hydro-Thermal Interconnected Power System," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    6. Mostafa Elshahed & Mohamed A. Tolba & Ali M. El-Rifaie & Ahmed Ginidi & Abdullah Shaheen & Shazly A. Mohamed, 2023. "An Artificial Rabbits’ Optimization to Allocate PVSTATCOM for Ancillary Service Provision in Distribution Systems," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    7. Partha Pratim Dey & Dulal Chandra Das & Abdul Latif & S. M. Suhail Hussain & Taha Selim Ustun, 2020. "Active Power Management of Virtual Power Plant under Penetration of Central Receiver Solar Thermal-Wind Using Butterfly Optimization Technique," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    8. Nitesh Kumar Singh & Chaitali Koley & Sadhan Gope & Subhojit Dawn & Taha Selim Ustun, 2021. "An Economic Risk Analysis in Wind and Pumped Hydro Energy Storage Integrated Power System Using Meta-Heuristic Algorithm," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    9. Fahad R. Albogamy & Sajjad Ali Khan & Ghulam Hafeez & Sadia Murawwat & Sheraz Khan & Syed Irtaza Haider & Abdul Basit & Klaus-Dieter Thoben, 2022. "Real-Time Energy Management and Load Scheduling with Renewable Energy Integration in Smart Grid," Sustainability, MDPI, vol. 14(3), pages 1-28, February.
    10. Dawn, Subhojit & Tiwari, Prashant Kumar & Goswami, Arup Kumar, 2017. "An approach for efficient assessment of the performance of double auction competitive power market under variable imbalance cost due to high uncertain wind penetration," Renewable Energy, Elsevier, vol. 108(C), pages 230-243.
    11. Abdelhakim Idir & Laurent Canale & Yassine Bensafia & Khatir Khettab, 2022. "Design and Robust Performance Analysis of Low-Order Approximation of Fractional PID Controller Based on an IABC Algorithm for an Automatic Voltage Regulator System," Energies, MDPI, vol. 15(23), pages 1-20, November.
    12. Muhammad Zahid & Jinfu Chen & Yinhong Li & Xianzhong Duan & Qi Lei & Wang Bo & Ghulam Mohy-ud-din & Asad Waqar, 2017. "New Approach for Optimal Location and Parameters Setting of UPFC for Enhancing Power Systems Stability under Contingency Analysis," Energies, MDPI, vol. 10(11), pages 1-23, October.
    13. Selvaraju, Ramesh Kumar & Somaskandan, Ganapathy, 2016. "Impact of energy storage units on load frequency control of deregulated power systems," Energy, Elsevier, vol. 97(C), pages 214-228.
    14. Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Strategy for System Risk Mitigation Using FACTS Devices in a Wind Incorporated Competitive Power System," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Strategy for System Risk Mitigation Using FACTS Devices in a Wind Incorporated Competitive Power System," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    2. Preeti Ranjan Sahu & Rajesh Kumar Lenka & Rajendra Kumar Khadanga & Prakash Kumar Hota & Sidhartha Panda & Taha Selim Ustun, 2022. "Power System Stability Improvement of FACTS Controller and PSS Design: A Time-Delay Approach," Sustainability, MDPI, vol. 14(21), pages 1-22, November.
    3. Ganesh Sampatrao Patil & Anwar Mulla & Subhojit Dawn & Taha Selim Ustun, 2022. "Profit Maximization with Imbalance Cost Improvement by Solar PV-Battery Hybrid System in Deregulated Power Market," Energies, MDPI, vol. 15(14), pages 1-21, July.
    4. Mitul Ranjan Chakraborty & Subhojit Dawn & Pradip Kumar Saha & Jayanta Bhusan Basu & Taha Selim Ustun, 2022. "System Profit Improvement of a Thermal–Wind–CAES Hybrid System Considering Imbalance Cost in the Electricity Market," Energies, MDPI, vol. 15(24), pages 1-25, December.
    5. Smruti Ranjan Nayak & Rajendra Kumar Khadanga & Sidhartha Panda & Preeti Ranjan Sahu & Sasmita Padhy & Taha Selim Ustun, 2023. "Participation of Renewable Energy Sources in the Frequency Regulation Issues of a Five-Area Hybrid Power System Utilizing a Sine Cosine-Adopted African Vulture Optimization Algorithm," Energies, MDPI, vol. 16(2), pages 1-21, January.
    6. Shreya Shree Das & Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Joint Scheduling Strategy for Wind and Solar Photovoltaic Systems to Grasp Imbalance Cost in Competitive Market," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    7. Sheikh Safiullah & Asadur Rahman & Shameem Ahmad Lone & S. M. Suhail Hussain & Taha Selim Ustun, 2022. "Novel COVID-19 Based Optimization Algorithm (C-19BOA) for Performance Improvement of Power Systems," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    8. Ganesh Sampatrao Patil & Anwar Mulla & Taha Selim Ustun, 2022. "Impact of Wind Farm Integration on LMP in Deregulated Energy Markets," Sustainability, MDPI, vol. 14(7), pages 1-20, April.
    9. Sudhanshu Ranjan & Smriti Jaiswal & Abdul Latif & Dulal Chandra Das & Nidul Sinha & S. M. Suhail Hussain & Taha Selim Ustun, 2021. "Isolated and Interconnected Multi-Area Hybrid Power Systems: A Review on Control Strategies," Energies, MDPI, vol. 14(24), pages 1-20, December.
    10. Maher G. M. Abdolrasol & Mahammad Abdul Hannan & S. M. Suhail Hussain & Taha Selim Ustun & Mahidur R. Sarker & Pin Jern Ker, 2021. "Energy Management Scheduling for Microgrids in the Virtual Power Plant System Using Artificial Neural Networks," Energies, MDPI, vol. 14(20), pages 1-19, October.
    11. Yanis Hamoudi & Hocine Amimeur & Djamal Aouzellag & Maher G. M. Abdolrasol & Taha Selim Ustun, 2023. "Hyperparameter Bayesian Optimization of Gaussian Process Regression Applied in Speed-Sensorless Predictive Torque Control of an Autonomous Wind Energy Conversion System," Energies, MDPI, vol. 16(12), pages 1-19, June.
    12. Ajay Kumar & Deepak Kumar Gupta & Sriparna Roy Ghatak & Bhargav Appasani & Nicu Bizon & Phatiphat Thounthong, 2022. "A Novel Improved GSA-BPSO Driven PID Controller for Load Frequency Control of Multi-Source Deregulated Power System," Mathematics, MDPI, vol. 10(18), pages 1-41, September.
    13. Narendra Kumar Jena & Subhadra Sahoo & Binod Kumar Sahu & Amiya Kumar Naik & Mohit Bajaj & Stanislav Misak & Vojtech Blazek & Lukas Prokop, 2023. "Impact of a Redox Flow Battery on the Frequency Stability of a Five-Area System Integrated with Renewable Sources," Energies, MDPI, vol. 16(14), pages 1-29, July.
    14. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    15. Paliwal, Priyanka & Patidar, N.P. & Nema, R.K., 2014. "Determination of reliability constrained optimal resource mix for an autonomous hybrid power system using Particle Swarm Optimization," Renewable Energy, Elsevier, vol. 63(C), pages 194-204.
    16. Taha Selim Ustun, 2022. "Power Systems Imitate Nature for Improved Performance Use of Nature-Inspired Optimization Techniques," Energies, MDPI, vol. 15(17), pages 1-2, August.
    17. Erick Alves & Santiago Sanchez & Danilo Brandao & Elisabetta Tedeschi, 2019. "Smart Load Management with Energy Storage for Power Quality Enhancement in Wind-Powered Oil and Gas Applications," Energies, MDPI, vol. 12(15), pages 1-15, August.
    18. Mengjun Ming & Rui Wang & Yabing Zha & Tao Zhang, 2017. "Multi-Objective Optimization of Hybrid Renewable Energy System Using an Enhanced Multi-Objective Evolutionary Algorithm," Energies, MDPI, vol. 10(5), pages 1-15, May.
    19. Jayanta Bhusan Basu & Subhojit Dawn & Pradip Kumar Saha & Mitul Ranjan Chakraborty & Taha Selim Ustun, 2022. "Economic Enhancement of Wind–Thermal–Hydro System Considering Imbalance Cost in Deregulated Power Market," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    20. Oscar Danilo Montoya & Walter Gil-González & Jesus C. Hernández, 2023. "Efficient Integration of Fixed-Step Capacitor Banks and D-STATCOMs in Radial and Meshed Distribution Networks Considering Daily Operation Curves," Energies, MDPI, vol. 16(8), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1621-:d:1059504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.