IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4738-d1172072.html
   My bibliography  Save this article

Hyperparameter Bayesian Optimization of Gaussian Process Regression Applied in Speed-Sensorless Predictive Torque Control of an Autonomous Wind Energy Conversion System

Author

Listed:
  • Yanis Hamoudi

    (Laboratoire de Maitrise des Energies Renouvelables (LMER), Faculté de Technologie, Université de Bejaia, Bejaia 06000, Algeria)

  • Hocine Amimeur

    (Laboratoire de Maitrise des Energies Renouvelables (LMER), Faculté de Technologie, Université de Bejaia, Bejaia 06000, Algeria)

  • Djamal Aouzellag

    (Laboratoire de Maitrise des Energies Renouvelables (LMER), Faculté de Technologie, Université de Bejaia, Bejaia 06000, Algeria)

  • Maher G. M. Abdolrasol

    (Department of Electric, Electronics and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Taha Selim Ustun

    (Fukushima Renewable Energy Institute, AIST (FREA), National Institute of Advanced Industrial Science and Technology (AIST), Koriyama 963-0298, Japan)

Abstract

This paper introduces a novel approach to speed-sensorless predictive torque control (PTC) in an autonomous wind energy conversion system, specifically utilizing an asymmetric double star induction generator (ADSIG). To achieve accurate estimation of non-linear quantities, the Gaussian Process Regression algorithm (GPR) is employed as a powerful machine learning tool for designing speed and flux estimators. To enhance the capabilities of the GPR, two improvements were implemented, (a) hyperparametric optimization through the Bayesian optimization (BO) algorithm and (b) curation of the input vector using the gray box concept, leveraging our existing knowledge of the ADSIG. Simulation results have demonstrated that the proposed GPR-PTC would remain robust and unaffected by the absence of a speed sensor, maintaining performance even under varying magnetizing inductance. This enables a reliable and cost-effective control solution.

Suggested Citation

  • Yanis Hamoudi & Hocine Amimeur & Djamal Aouzellag & Maher G. M. Abdolrasol & Taha Selim Ustun, 2023. "Hyperparameter Bayesian Optimization of Gaussian Process Regression Applied in Speed-Sensorless Predictive Torque Control of an Autonomous Wind Energy Conversion System," Energies, MDPI, vol. 16(12), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4738-:d:1172072
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4738/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4738/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aman A. Tanvir & Adel Merabet, 2020. "Artificial Neural Network and Kalman Filter for Estimation and Control in Standalone Induction Generator Wind Energy DC Microgrid," Energies, MDPI, vol. 13(7), pages 1-16, April.
    2. Furquan Nadeem & Mohd Asim Aftab & S.M. Suhail Hussain & Ikbal Ali & Prashant Kumar Tiwari & Arup Kumar Goswami & Taha Selim Ustun, 2019. "Virtual Power Plant Management in Smart Grids with XMPP Based IEC 61850 Communication," Energies, MDPI, vol. 12(12), pages 1-20, June.
    3. Nitesh Kumar Singh & Chaitali Koley & Sadhan Gope & Subhojit Dawn & Taha Selim Ustun, 2021. "An Economic Risk Analysis in Wind and Pumped Hydro Energy Storage Integrated Power System Using Meta-Heuristic Algorithm," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    4. Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Strategy for System Risk Mitigation Using FACTS Devices in a Wind Incorporated Competitive Power System," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    5. Fengxiang Wang & Zhenbin Zhang & Xuezhu Mei & José Rodríguez & Ralph Kennel, 2018. "Advanced Control Strategies of Induction Machine: Field Oriented Control, Direct Torque Control and Model Predictive Control," Energies, MDPI, vol. 11(1), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jayanta Bhusan Basu & Subhojit Dawn & Pradip Kumar Saha & Mitul Ranjan Chakraborty & Taha Selim Ustun, 2022. "Economic Enhancement of Wind–Thermal–Hydro System Considering Imbalance Cost in Deregulated Power Market," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    2. Mitul Ranjan Chakraborty & Subhojit Dawn & Pradip Kumar Saha & Jayanta Bhusan Basu & Taha Selim Ustun, 2023. "System Economy Improvement and Risk Shortening by Fuel Cell-UPFC Placement in a Wind-Combined System," Energies, MDPI, vol. 16(4), pages 1-30, February.
    3. Preeti Ranjan Sahu & Rajesh Kumar Lenka & Rajendra Kumar Khadanga & Prakash Kumar Hota & Sidhartha Panda & Taha Selim Ustun, 2022. "Power System Stability Improvement of FACTS Controller and PSS Design: A Time-Delay Approach," Sustainability, MDPI, vol. 14(21), pages 1-22, November.
    4. Ganesh Sampatrao Patil & Anwar Mulla & Subhojit Dawn & Taha Selim Ustun, 2022. "Profit Maximization with Imbalance Cost Improvement by Solar PV-Battery Hybrid System in Deregulated Power Market," Energies, MDPI, vol. 15(14), pages 1-21, July.
    5. Karol Wróbel & Piotr Serkies & Krzysztof Szabat, 2020. "Model Predictive Base Direct Speed Control of Induction Motor Drive—Continuous and Finite Set Approaches," Energies, MDPI, vol. 13(5), pages 1-15, March.
    6. Marinka Baghdasaryan & Azatuhi Ulikyan & Arusyak Arakelyan, 2023. "Application of an Artificial Neural Network for Detecting, Classifying, and Making Decisions about Asymmetric Short Circuits in a Synchronous Generator," Energies, MDPI, vol. 16(6), pages 1-19, March.
    7. Smruti Ranjan Nayak & Rajendra Kumar Khadanga & Sidhartha Panda & Preeti Ranjan Sahu & Sasmita Padhy & Taha Selim Ustun, 2023. "Participation of Renewable Energy Sources in the Frequency Regulation Issues of a Five-Area Hybrid Power System Utilizing a Sine Cosine-Adopted African Vulture Optimization Algorithm," Energies, MDPI, vol. 16(2), pages 1-21, January.
    8. Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Strategy for System Risk Mitigation Using FACTS Devices in a Wind Incorporated Competitive Power System," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    9. Chaymae Fahassa & Yassine Zahraoui & Mohammed Akherraz & Mohammed Kharrich & Ehab E. Elattar & Salah Kamel, 2022. "Induction Motor DTC Performance Improvement by Inserting Fuzzy Logic Controllers and Twelve-Sector Neural Network Switching Table," Mathematics, MDPI, vol. 10(9), pages 1-14, April.
    10. Mitul Ranjan Chakraborty & Subhojit Dawn & Pradip Kumar Saha & Jayanta Bhusan Basu & Taha Selim Ustun, 2022. "System Profit Improvement of a Thermal–Wind–CAES Hybrid System Considering Imbalance Cost in the Electricity Market," Energies, MDPI, vol. 15(24), pages 1-25, December.
    11. Tadeusz Białoń & Marian Pasko & Roman Niestrój, 2020. "Developing Induction Motor State Observers with Increased Robustness," Energies, MDPI, vol. 13(20), pages 1-24, October.
    12. Camila Paes Salomon & Wilson Cesar Sant’Ana & Germano Lambert-Torres & Luiz Eduardo Borges da Silva & Erik Leandro Bonaldi & Levy Ely de Lacerda De Oliveira, 2018. "Comparison among Methods for Induction Motor Low-Intrusive Efficiency Evaluation Including a New AGT Approach with a Modified Stator Resistance," Energies, MDPI, vol. 11(4), pages 1-21, March.
    13. Malgorzata Binek & Andrzej Kanicki & Pawel Rozga, 2021. "Application of an Artificial Neural Network for Measurements of Synchrophasor Indicators in the Power System," Energies, MDPI, vol. 14(9), pages 1-14, April.
    14. Thyago Estrabis & Gabriel Gentil & Raymundo Cordero, 2021. "Development of a Resolver-to-Digital Converter Based on Second-Order Difference Generalized Predictive Control," Energies, MDPI, vol. 14(2), pages 1-22, January.
    15. Ondrej Lipcak & Filip Baum & Jan Bauer, 2021. "Influence of Selected Non-Ideal Aspects on Active and Reactive Power MRAS for Stator and Rotor Resistance Estimation," Energies, MDPI, vol. 14(20), pages 1-19, October.
    16. Andrzej Chudzikiewicz & Igor Maciejewski & Tomasz Krzyżyński & Andrzej Krzyszkowski & Anna Stelmach, 2022. "Electric Drive Solution for Low-Floor City Transport Trams," Energies, MDPI, vol. 15(13), pages 1-18, June.
    17. Taha Selim Ustun & S. M. Suhail Hussain & Mazheruddin H. Syed & Paulius Dambrauskas, 2021. "IEC-61850-Based Communication for Integrated EV Management in Power Systems with Renewable Penetration," Energies, MDPI, vol. 14(9), pages 1-15, April.
    18. Pavel Karlovsky & Jiri Lettl, 2018. "Induction Motor Drive Direct Torque Control and Predictive Torque Control Comparison Based on Switching Pattern Analysis," Energies, MDPI, vol. 11(7), pages 1-14, July.
    19. Pedro Gonçalves & Sérgio Cruz & André Mendes, 2019. "Finite Control Set Model Predictive Control of Six-Phase Asymmetrical Machines—An Overview," Energies, MDPI, vol. 12(24), pages 1-42, December.
    20. Haixia Li & Jican Lin & Ziguang Lu, 2019. "Three Vectors Model Predictive Torque Control Without Weighting Factor Based on Electromagnetic Torque Feedback Compensation," Energies, MDPI, vol. 12(7), pages 1-19, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4738-:d:1172072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.