IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1792-d742179.html
   My bibliography  Save this article

Real-Time Energy Management and Load Scheduling with Renewable Energy Integration in Smart Grid

Author

Listed:
  • Fahad R. Albogamy

    (Computer Sciences Program, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Sajjad Ali Khan

    (US Pakistan Center for Advance Studies in Energy, University of Engineering and Technology, Peshawar 25000, Pakistan)

  • Ghulam Hafeez

    (Department of Electrical Engineering, University of Engineering and Technology, Mardan 23200, Pakistan)

  • Sadia Murawwat

    (Department of Electrical Engineering, Lahore College for Women University, Lahore 51000, Pakistan)

  • Sheraz Khan

    (Department of Electrical Engineering, University of Engineering and Technology, Mardan 23200, Pakistan)

  • Syed Irtaza Haider

    (College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia)

  • Abdul Basit

    (US Pakistan Center for Advance Studies in Energy, University of Engineering and Technology, Peshawar 25000, Pakistan)

  • Klaus-Dieter Thoben

    (Faculty of Production Engineering, University of Bremen, 28359 Bremen, Germany
    BIBA–Bremer Institut für Produktion und Logistik GmbH, 28359 Bremen, Germany)

Abstract

With the smart grid development, the modern electricity market is reformatted, where residential consumers can actively participate in the demand response (DR) program to balance demand with generation. However, lack of user knowledge is a challenging issue in responding to DR incentive signals. Thus, an Energy Management Controller (EMC) emerged that automatically respond to DR signal and solve energy management problem. On this note, in this work, a hybrid algorithm of Enhanced Differential Evolution (EDE) and Genetic Algorithm (GA) is developed, namely EDGE. The EMC is programmed based with EDGE algorithm to automatically respond to DR signals to solve energy management problems via scheduling three types of household load: interruptible, non-interruptible, and hybrid. The EDGE algorithm has critical features of both algorithms (GA and EDE), enabling the EMC to generate an optimal schedule of household load to reduce energy expense, carbon emission, Peak to Average Ratio (PAR), and user discomfort. To validate the proposed EDGE algorithm, simulations are conducted compared to the existing algorithms like Binary Particle Swarm Optimization (BPSO), GA, Wind Driven Optimization (WDO), and EDE. Results illustrate that the proposed EDGE algorithm outperforms benchmark algorithms in energy expense minimization, carbon emission minimization, PAR alleviation, and user discomfort maximization.

Suggested Citation

  • Fahad R. Albogamy & Sajjad Ali Khan & Ghulam Hafeez & Sadia Murawwat & Sheraz Khan & Syed Irtaza Haider & Abdul Basit & Klaus-Dieter Thoben, 2022. "Real-Time Energy Management and Load Scheduling with Renewable Energy Integration in Smart Grid," Sustainability, MDPI, vol. 14(3), pages 1-28, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1792-:d:742179
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernandez, Edstan & Hossain, M.J. & Nizami, M.S.H., 2018. "Game-theoretic approach to demand-side energy management for a smart neighbourhood in Sydney incorporating renewable resources," Applied Energy, Elsevier, vol. 232(C), pages 245-257.
    2. Srinivasan, Dipti & Rajgarhia, Sanjana & Radhakrishnan, Bharat Menon & Sharma, Anurag & Khincha, H.P., 2017. "Game-Theory based dynamic pricing strategies for demand side management in smart grids," Energy, Elsevier, vol. 126(C), pages 132-143.
    3. Moser, A. & Muschick, D. & Gölles, M. & Nageler, P. & Schranzhofer, H. & Mach, T. & Ribas Tugores, C. & Leusbrock, I. & Stark, S. & Lackner, F. & Hofer, A., 2020. "A MILP-based modular energy management system for urban multi-energy systems: Performance and sensitivity analysis," Applied Energy, Elsevier, vol. 261(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alzahrani, Ahmad & Sajjad, Khizar & Hafeez, Ghulam & Murawwat, Sadia & Khan, Sheraz & Khan, Farrukh Aslam, 2023. "Real-time energy optimization and scheduling of buildings integrated with renewable microgrid," Applied Energy, Elsevier, vol. 335(C).
    2. Ouédraogo, S. & Faggianelli, G.A. & Notton, G. & Duchaud, J.L. & Voyant, C., 2022. "Impact of electricity tariffs and energy management strategies on PV/Battery microgrid performances," Renewable Energy, Elsevier, vol. 199(C), pages 816-825.
    3. Mitul Ranjan Chakraborty & Subhojit Dawn & Pradip Kumar Saha & Jayanta Bhusan Basu & Taha Selim Ustun, 2023. "System Economy Improvement and Risk Shortening by Fuel Cell-UPFC Placement in a Wind-Combined System," Energies, MDPI, vol. 16(4), pages 1-30, February.
    4. Ziyi Zhao, 2023. "Operation Simulation and Economic Analysis of Household Hybrid PV and BESS Systems in the Improved TOU Mode," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
    5. Marcus Evandro Teixeira Souza Junior & Luiz Carlos Gomes Freitas, 2022. "Power Electronics for Modern Sustainable Power Systems: Distributed Generation, Microgrids and Smart Grids—A Review," Sustainability, MDPI, vol. 14(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sajjad Ali & Imran Khan & Sadaqat Jan & Ghulam Hafeez, 2021. "An Optimization Based Power Usage Scheduling Strategy Using Photovoltaic-Battery System for Demand-Side Management in Smart Grid," Energies, MDPI, vol. 14(8), pages 1-29, April.
    2. Li, Bo & Li, Xu & Su, Qingyu, 2022. "A system and game strategy for the isolated island electric-gas deeply coupled energy network," Applied Energy, Elsevier, vol. 306(PA).
    3. Nizami, M.S.H. & Hossain, M.J. & Amin, B.M. Ruhul & Fernandez, Edstan, 2020. "A residential energy management system with bi-level optimization-based bidding strategy for day-ahead bi-directional electricity trading," Applied Energy, Elsevier, vol. 261(C).
    4. Tsao, Yu-Chung & Thanh, Vo-Van & Lu, Jye-Chyi, 2019. "Multiobjective robust fuzzy stochastic approach for sustainable smart grid design," Energy, Elsevier, vol. 176(C), pages 929-939.
    5. Unterberger, Viktor & Lichtenegger, Klaus & Kaisermayer, Valentin & Gölles, Markus & Horn, Martin, 2021. "An adaptive short-term forecasting method for the energy yield of flat-plate solar collector systems," Applied Energy, Elsevier, vol. 293(C).
    6. Vahid-Ghavidel, Morteza & Shafie-khah, Miadreza & Javadi, Mohammad S. & Santos, Sérgio F. & Gough, Matthew & Quijano, Darwin A. & Catalao, Joao P.S., 2023. "Hybrid IGDT-stochastic self-scheduling of a distributed energy resources aggregator in a multi-energy system," Energy, Elsevier, vol. 265(C).
    7. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    8. Lu, Qing & Lü, Shuaikang & Leng, Yajun, 2019. "A Nash-Stackelberg game approach in regional energy market considering users’ integrated demand response," Energy, Elsevier, vol. 175(C), pages 456-470.
    9. Huang, Pei & Sun, Yongjun, 2019. "A collaborative demand control of nearly zero energy buildings in response to dynamic pricing for performance improvements at cluster level," Energy, Elsevier, vol. 174(C), pages 911-921.
    10. Su, Huai & Chi, Lixun & Zio, Enrico & Li, Zhenlin & Fan, Lin & Yang, Zhe & Liu, Zhe & Zhang, Jinjun, 2021. "An integrated, systematic data-driven supply-demand side management method for smart integrated energy systems," Energy, Elsevier, vol. 235(C).
    11. Setya Budi, Rizki Firmansyah & Sarjiya, & Hadi, Sasongko Pramono, 2022. "Indonesia's deregulated generation expansion planning model based on mixed strategy game theory model for determining the optimal power purchase agreement," Energy, Elsevier, vol. 260(C).
    12. Tian, Xiaoge & Chen, Weiming & Hu, Jinglu, 2023. "Game-theoretic modeling of power supply chain coordination under demand variation in China: A case study of Guangdong Province," Energy, Elsevier, vol. 262(PA).
    13. Houben, Nikolaus & Cosic, Armin & Stadler, Michael & Mansoor, Muhammad & Zellinger, Michael & Auer, Hans & Ajanovic, Amela & Haas, Reinhard, 2023. "Optimal dispatch of a multi-energy system microgrid under uncertainty: A renewable energy community in Austria," Applied Energy, Elsevier, vol. 337(C).
    14. Sarker, Eity & Seyedmahmoudian, Mehdi & Jamei, Elmira & Horan, Ben & Stojcevski, Alex, 2020. "Optimal management of home loads with renewable energy integration and demand response strategy," Energy, Elsevier, vol. 210(C).
    15. Charwand, Mansour & Gitizadeh, Mohsen, 2018. "Optimal TOU tariff design using robust intuitionistic fuzzy divergence based thresholding," Energy, Elsevier, vol. 147(C), pages 655-662.
    16. Mbungu, Nsilulu T. & Bansal, Ramesh C. & Naidoo, Raj M. & Bettayeb, Maamar & Siti, Mukwanga W. & Bipath, Minnesh, 2020. "A dynamic energy management system using smart metering," Applied Energy, Elsevier, vol. 280(C).
    17. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    18. Buonomano, Annamaria, 2020. "Building to Vehicle to Building concept: A comprehensive parametric and sensitivity analysis for decision making aims," Applied Energy, Elsevier, vol. 261(C).
    19. Khaled Abedrabboh & Luluwah Al-Fagih, 2021. "Applications of Mechanism Design in Market-Based Demand-Side Management," Papers 2106.14659, arXiv.org.
    20. Jiang, Yinghua & Kang, Lixia & Liu, Yongzhong, 2020. "Optimal configuration of battery energy storage system with multiple types of batteries based on supply-demand characteristics," Energy, Elsevier, vol. 206(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1792-:d:742179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.