IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8853-d1160339.html
   My bibliography  Save this article

Operation Simulation and Economic Analysis of Household Hybrid PV and BESS Systems in the Improved TOU Mode

Author

Listed:
  • Ziyi Zhao

    (Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK)

Abstract

With the popularization of electric vehicles and electric boilers, household electricity consumption will increase significantly. Household hybrid photovoltaic (PV) systems and battery energy storage systems (BESSs) can supply increasing household electricity consumption without expanding the existing distribution network. This paper validates the technical feasibility of connecting a large number of household power users that contain BESSs and PVs in a distribution line by a simulation in Matlab. In addition to technical feasibility, this article improves the time-of-use (TOU) form to achieve economic feasibility (covering equipment costs). In the past, the TOU was set from the perspective of the load demand of the grid, but the actual user participation would affect this effect. In this paper, based on a social science survey, a new three-level rate TOU is introduced, which has little impact on residents’ lifestyle, to effectively increase the response frequency effectively. Combined with the improved TOU and the state of PVs, the BESS control mode is set for simulation. To compare the three-tier rate TOU with the normal TOU tariff and select the best household BESS size, a MATLAB simulation is used to simulate the common household BESS capacity. The results indicate that the combination of the three-tier rate TOU with a 4 kWh household BESS can afford the investment of household PVs and BESSs. The high cost issue that previously primarily limited the true use of BESSs is expected to be resolved.

Suggested Citation

  • Ziyi Zhao, 2023. "Operation Simulation and Economic Analysis of Household Hybrid PV and BESS Systems in the Improved TOU Mode," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8853-:d:1160339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8853/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8853/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    2. Fahad R. Albogamy & Sajjad Ali Khan & Ghulam Hafeez & Sadia Murawwat & Sheraz Khan & Syed Irtaza Haider & Abdul Basit & Klaus-Dieter Thoben, 2022. "Real-Time Energy Management and Load Scheduling with Renewable Energy Integration in Smart Grid," Sustainability, MDPI, vol. 14(3), pages 1-28, February.
    3. Nottrott, A. & Kleissl, J. & Washom, B., 2013. "Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems," Renewable Energy, Elsevier, vol. 55(C), pages 230-240.
    4. Noman Shabbir & Lauri Kütt & Kamran Daniel & Victor Astapov & Hadi Ashraf Raja & Muhammad Naveed Iqbal & Oleksandr Husev, 2022. "Feasibility Investigation for Residential Battery Sizing Considering EV Charging Demand," Sustainability, MDPI, vol. 14(3), pages 1-13, January.
    5. Koskela, Juha & Rautiainen, Antti & Järventausta, Pertti, 2019. "Using electrical energy storage in residential buildings – Sizing of battery and photovoltaic panels based on electricity cost optimization," Applied Energy, Elsevier, vol. 239(C), pages 1175-1189.
    6. Daniele Gallo & Carmine Landi & Mario Luiso & Rosario Morello, 2013. "Optimization of Experimental Model Parameter Identification for Energy Storage Systems," Energies, MDPI, vol. 6(9), pages 1-19, September.
    7. Neufeld, John L., 1987. "Price Discrimination and the Adoption of the Electricity Demand Charge," The Journal of Economic History, Cambridge University Press, vol. 47(3), pages 693-709, September.
    8. Javier Salles-Mardones & Alex Flores-Maradiaga & Mohamed A. Ahmed, 2022. "Feasibility Assessment of Photovoltaic Systems to Save Energy Consumption in Residential Houses with Electric Vehicles in Chile," Sustainability, MDPI, vol. 14(9), pages 1-26, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franck Cinyama Mushid & Mohamed Fayaz Khan, 2025. "Battery Energy Storage for Ancillary Services in Distribution Networks: Technologies, Applications, and Deployment Challenges—A Comprehensive Review," Energies, MDPI, vol. 18(20), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Sihui & Peng, Jinqing & Zou, Bin & Li, Bojia & Lu, Chujie & Cao, Jingyu & Luo, Yimo & Ma, Tao, 2021. "Zero energy potential of photovoltaic direct-driven air conditioners with considering the load flexibility of air conditioners," Applied Energy, Elsevier, vol. 304(C).
    2. Malhotra, Abhishek & Battke, Benedikt & Beuse, Martin & Stephan, Annegret & Schmidt, Tobias, 2016. "Use cases for stationary battery technologies: A review of the literature and existing projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 705-721.
    3. Cai, Jie & Zhang, Hao & Jin, Xing, 2019. "Aging-aware predictive control of PV-battery assets in buildings," Applied Energy, Elsevier, vol. 236(C), pages 478-488.
    4. Seung-Ju Lee & Yourim Yoon, 2020. "Electricity Cost Optimization in Energy Storage Systems by Combining a Genetic Algorithm with Dynamic Programming," Mathematics, MDPI, vol. 8(9), pages 1-20, September.
    5. Wu, Zhuochun & Kang, Jidong & Mosteiro-Romero, Martín & Bartolini, Andrea & Ng, Tsan Sheng & Su, Bin, 2024. "A distributionally robust optimization model for building-integrated photovoltaic system expansion planning under demand and irradiance uncertainties," Applied Energy, Elsevier, vol. 372(C).
    6. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1205-1230.
    7. Guandalini, Giulio & Campanari, Stefano & Romano, Matteo C., 2015. "Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment," Applied Energy, Elsevier, vol. 147(C), pages 117-130.
    8. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    9. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    10. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    12. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    13. Hartmann, Bálint & Divényi, Dániel & Vokony, István, 2018. "Evaluation of business possibilities of energy storage at commercial and industrial consumers – A case study," Applied Energy, Elsevier, vol. 222(C), pages 59-66.
    14. Umme Mumtahina & Sanath Alahakoon & Peter Wolfs, 2025. "A Day-Ahead Optimal Battery Scheduling Considering the Grid Stability of Distribution Feeders," Energies, MDPI, vol. 18(5), pages 1-20, February.
    15. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    16. Savolainen, Rebecka & Lahdelma, Risto, 2022. "Optimization of renewable energy for buildings with energy storages and 15-minute power balance," Energy, Elsevier, vol. 243(C).
    17. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "Appropriate storage for high-penetration grid-connected photovoltaic plants," Energy Policy, Elsevier, vol. 40(C), pages 335-344.
    18. Liu, Jia & Chen, Xi & Yang, Hongxing & Li, Yutong, 2020. "Energy storage and management system design optimization for a photovoltaic integrated low-energy building," Energy, Elsevier, vol. 190(C).
    19. M. Usman Saleem & Mustafa Shakir & M. Rehan Usman & M. Hamza Tahir Bajwa & Noman Shabbir & Payam Shams Ghahfarokhi & Kamran Daniel, 2023. "Integrating Smart Energy Management System with Internet of Things and Cloud Computing for Efficient Demand Side Management in Smart Grids," Energies, MDPI, vol. 16(12), pages 1-21, June.
    20. Fernando Echevarría Camarero & Ana Ogando-Martínez & Pablo Durán Gómez & Pablo Carrasco Ortega, 2022. "Profitability of Batteries in Photovoltaic Systems for Small Industrial Consumers in Spain under Current Regulatory Framework and Energy Prices," Energies, MDPI, vol. 16(1), pages 1-19, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8853-:d:1160339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.