IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v14y2010i8p2196-2201.html
   My bibliography  Save this item

Willingness to pay for renewable energy investment in Korea: A choice experiment study

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zong Woo Geem & Jin-Hong Kim, 2016. "Optimal Energy Mix with Renewable Portfolio Standards in Korea," Sustainability, MDPI, vol. 8(5), pages 1-14, May.
  2. Bigerna, Simona & Wen, Xingang & Hagspiel, Verena & Kort, Peter M., 2019. "Green electricity investments: Environmental target and the optimal subsidy," European Journal of Operational Research, Elsevier, vol. 279(2), pages 635-644.
  3. Kim, Hyunggeun & Park, Sangkyu & Lee, Jongsu, 2021. "Is renewable energy acceptable with power grid expansion? A quantitative study of South Korea's renewable energy acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  4. Proskurina, Svetlana & Heinimö, Jussi & Mikkilä, Mirja & Vakkilainen, Esa, 2015. "The wood pellet business in Russia with the role of North-West Russian regions: Present trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 730-740.
  5. Canepa, Alessandra & Chersoni, Giulia & Fontana, Magda, 2023. "The role of environmental and financial motivations in the adoption of energy-saving technologies: Evidence from European Union data," The Quarterly Review of Economics and Finance, Elsevier, vol. 91(C), pages 1-14.
  6. Herbes, Carsten & Friege, Christian & Baldo, Davide & Mueller, Kai-Markus, 2015. "Willingness to pay lip service? Applying a neuroscience-based method to WTP for green electricity," Energy Policy, Elsevier, vol. 87(C), pages 562-572.
  7. Ladenburg, Jacob, 2014. "Dynamic properties of the preferences for renewable energy sources – A wind power experience-based approach," Energy, Elsevier, vol. 76(C), pages 542-551.
  8. Broberg, Thomas & Daniel, Aemiro Melkamu & Persson, Lars, 2021. "Household preferences for load restrictions: Is there an effect of pro-environmental framing?," Energy Economics, Elsevier, vol. 97(C).
  9. Park, Eunil & Ohm, Jay Y., 2014. "Factors influencing the public intention to use renewable energy technologies in South Korea: Effects of the Fukushima nuclear accident," Energy Policy, Elsevier, vol. 65(C), pages 198-211.
  10. Anders Dugstad & Kristine Grimsrud & Gorm Kipperberg & Henrik Lindhjem & Ståle Navrud, 2020. "Scope elasticity and economic significance in discrete choice experiments," Discussion Papers 942, Statistics Norway, Research Department.
  11. Bao, Qifang & Sinitskaya, Ekaterina & Gomez, Kelley J. & MacDonald, Erin F. & Yang, Maria C., 2020. "A human-centered design approach to evaluating factors in residential solar PV adoption: A survey of homeowners in California and Massachusetts," Renewable Energy, Elsevier, vol. 151(C), pages 503-513.
  12. Kostakis, I. & Sardianou, E., 2012. "Which factors affect the willingness of tourists to pay for renewable energy?," Renewable Energy, Elsevier, vol. 38(1), pages 169-172.
  13. Jones, Benjamin A. & Ripberger, Joseph & Jenkins-Smith, Hank & Silva, Carol, 2017. "Estimating willingness to pay for greenhouse gas emission reductions provided by hydropower using the contingent valuation method," Energy Policy, Elsevier, vol. 111(C), pages 362-370.
  14. Carsten Herbes & Lorenz Braun & Dennis Rube, 2016. "Pricing of Biomethane Products Targeted at Private Households in Germany—Product Attributes and Providers’ Pricing Strategies," Energies, MDPI, vol. 9(4), pages 1-15, March.
  15. Kwak, So-Yoon & Yoo, Seung-Hoon, 2015. "The public’s value for developing ocean energy technology in the Republic of Korea: A contingent valuation study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 432-439.
  16. Oluoch, Sydney & Lal, Pankaj & Susaeta, Andres & Wolde, Bernabas, 2021. "Public preferences for renewable energy options: A choice experiment in Kenya," Energy Economics, Elsevier, vol. 98(C).
  17. Ladenburg, Jacob & Lutzeyer, Sanja, 2012. "The economics of visual disamenity reductions of offshore wind farms—Review and suggestions from an emerging field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6793-6802.
  18. Anders Dugstad & Kristine M. Grimsrud & Gorm Kipperberg & Henrik Lindhjem & Ståle Navrud, 2021. "Scope Elasticity of Willingness to pay in Discrete Choice Experiments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(1), pages 21-57, September.
  19. Dombi, Mihaly & Kuti, Istvan & Balogh, Peter, 2013. "Aspects Of The Sustainable Utilization Of Renewable Energy Sources," APSTRACT: Applied Studies in Agribusiness and Commerce, AGRIMBA, vol. 6(5), pages 1-4, April.
  20. Xie, Bai-Chen & Zhao, Wei, 2018. "Willingness to pay for green electricity in Tianjin, China: Based on the contingent valuation method," Energy Policy, Elsevier, vol. 114(C), pages 98-107.
  21. Lee, Shun-Chung, 2011. "Using real option analysis for highly uncertain technology investments: The case of wind energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4443-4450.
  22. Joseph Kim & Hyo-Jin Kim & Seung-Hoon Yoo, 2018. "Public Value of Marine Biodiesel Technology Development in South Korea," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
  23. Qingbin Wang & Laurel Valchuis & Ethan Thompson & David Conner & Robert Parsons, 2019. "Consumer Support and Willingness to Pay for Electricity from Solar, Wind, and Cow Manure in the United States: Evidence from a Survey in Vermont," Energies, MDPI, vol. 12(23), pages 1-13, November.
  24. Oerlemans, Leon A.G. & Chan, Kai-Ying & Volschenk, Jako, 2016. "Willingness to pay for green electricity: A review of the contingent valuation literature and its sources of error," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 875-885.
  25. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
  26. Mattmann, Matteo & Logar, Ivana & Brouwer, Roy, 2016. "Wind power externalities: A meta-analysis," Ecological Economics, Elsevier, vol. 127(C), pages 23-36.
  27. Kim, Jihyo & Park, Jooyoung & Kim, Jinsoo & Heo, Eunnyeong, 2013. "Renewable electricity as a differentiated good? The case of the Republic of Korea," Energy Policy, Elsevier, vol. 54(C), pages 327-334.
  28. Mariel, Petr & Meyerhoff, Jürgen & Hess, Stephane, 2015. "Heterogeneous preferences toward landscape externalities of wind turbines – combining choices and attitudes in a hybrid model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 647-657.
  29. Dombi, Mihály & Kuti, István & Balogh, Péter, 2014. "Sustainability assessment of renewable power and heat generation technologies," Energy Policy, Elsevier, vol. 67(C), pages 264-271.
  30. Yamaguchi, Yohei & Akai, Kenju & Shen, Junyi & Fujimura, Naoki & Shimoda, Yoshiyuki & Saijo, Tatsuyoshi, 2013. "Prediction of photovoltaic and solar water heater diffusion and evaluation of promotion policies on the basis of consumers’ choices," Applied Energy, Elsevier, vol. 102(C), pages 1148-1159.
  31. Eunil Park & Ki Joon Kim & Sang Jib Kwon & Taeil Han & Wongi S. Na & Angel P. Del Pobil, 2017. "Economic Feasibility of Renewable Electricity Generation Systems for Local Government Office: Evaluation of the Jeju Special Self-Governing Province in South Korea," Sustainability, MDPI, vol. 9(1), pages 1-13, January.
  32. Kontogianni, Areti & Tourkolias, Christos & Skourtos, Michalis, 2013. "Renewables portfolio, individual preferences and social values towards RES technologies," Energy Policy, Elsevier, vol. 55(C), pages 467-476.
  33. Brennan, Noreen & Van Rensburg, Thomas M, 2016. "Wind farm externalities and public preferences for community consultation in Ireland: A discrete choice experiments approach," Energy Policy, Elsevier, vol. 94(C), pages 355-365.
  34. Erick Arellanos & Wagner Guzman & Ligia García, 2022. "How to Prioritize the Attributes of Water Ecosystem Service for Water Security Management: Choice Experiments versus Analytic Hierarchy Process," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
  35. Zhao, Xiaoli & Cai, Qiong & Ma, Chunbo & Hu, Yanan & Luo, Kaiyan & Li, William, 2017. "Economic evaluation of environmental externalities in China’s coal-fired power generation," Energy Policy, Elsevier, vol. 102(C), pages 307-317.
  36. Stefania Troiano & Daniel Vecchiato & Francesco Marangon & Tiziano Tempesta & Federico Nassivera, 2019. "Households’ Preferences for a New ‘Climate-Friendly’ Heating System: Does Contribution to Reducing Greenhouse Gases Matter?," Energies, MDPI, vol. 12(13), pages 1-19, July.
  37. Plum, Christiane & Olschewski, Roland & Jobin, Marilou & van Vliet, Oscar, 2019. "Public preferences for the Swiss electricity system after the nuclear phase-out: A choice experiment," Energy Policy, Elsevier, vol. 130(C), pages 181-196.
  38. Vecchiato, Daniel & Tempesta, Tiziano, 2015. "Public preferences for electricity contracts including renewable energy: A marketing analysis with choice experiments," Energy, Elsevier, vol. 88(C), pages 168-179.
  39. Geem, Zong Woo, 2011. "Transport energy demand modeling of South Korea using artificial neural network," Energy Policy, Elsevier, vol. 39(8), pages 4644-4650, August.
  40. Shin, Jungwoo & Woo, JongRoul & Huh, Sung-Yoon & Lee, Jongsu & Jeong, Gicheol, 2014. "Analyzing public preferences and increasing acceptability for the Renewable Portfolio Standard in Korea," Energy Economics, Elsevier, vol. 42(C), pages 17-26.
  41. Lee, Shun-Chung & Shih, Li-Hsing, 2011. "Enhancing renewable and sustainable energy development based on an options-based policy evaluation framework: Case study of wind energy technology in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2185-2198, June.
  42. Oberst, Christian & Madlener, Reinhard, 2015. "Prosumer Preferences Regarding the Adoption of Micro‐Generation Technologies: Empirical Evidence for German Homeowners," FCN Working Papers 22/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
  43. Jihee Lee & HyungBin Moon & Jongsu Lee, 2021. "Consumers’ heterogeneous preferences toward the renewable portfolio standard policy: An evaluation of Korea’s energy transition policy," Energy & Environment, , vol. 32(4), pages 648-667, June.
  44. Hye-Jeong Lee & Sung-Yoon Huh & Seung-Hoon Yoo, 2018. "Social Preferences for Small-Scale Solar Photovoltaic Power Plants in South Korea: A Choice Experiment Study," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
  45. Mattmann, Matteo & Logar, Ivana & Brouwer, Roy, 2016. "Hydropower externalities: A meta-analysis," Energy Economics, Elsevier, vol. 57(C), pages 66-77.
  46. Mamadzhanov, Alisher & McCluskey, Jill J. & Li, Tongzhe, 2019. "Willingness to pay for a second-generation bioethanol: A case study of Korea," Energy Policy, Elsevier, vol. 127(C), pages 464-474.
  47. Kang, Byung O. & Lee, Munsu & Kim, Youngil & Jung, Jaesung, 2018. "Economic analysis of a customer-installed energy storage system for both self-saving operation and demand response program participation in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 69-83.
  48. Lim, Seul-Ye & Lim, Kyoung-Min & Yoo, Seung-Hoon, 2014. "External benefits of waste-to-energy in Korea: A choice experiment study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 588-595.
  49. Menegaki, Angeliki N., 2012. "A social marketing mix for renewable energy in Europe based on consumer stated preference surveys," Renewable Energy, Elsevier, vol. 39(1), pages 30-39.
  50. Aruga, Kentaka & Bolt, Timothy & Pest, Przemysław, 2021. "Energy policy trade-offs in Poland: A best-worst scaling discrete choice experiment," Energy Policy, Elsevier, vol. 156(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.