IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v139y2021ics1364032120308601.html
   My bibliography  Save this item

Installation of offshore wind turbines: A technical review

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Tjaberings, Jorick & Fazi, Stefano & Ursavas, Evrim, 2022. "Evaluating operational strategies for the installation of offshore wind turbine substructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
  2. Papi, F. & Bianchini, A., 2022. "Technical challenges in floating offshore wind turbine upscaling: A critical analysis based on the NREL 5 MW and IEA 15 MW Reference Turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
  3. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  4. Upma Singh & Mohammad Rizwan & Hasmat Malik & Fausto Pedro García Márquez, 2022. "Wind Energy Scenario, Success and Initiatives towards Renewable Energy in India—A Review," Energies, MDPI, vol. 15(6), pages 1-39, March.
  5. Charis J. Gantes & Maria Villi Billi & Mahmut Güldogan & Semih Gül, 2021. "A Novel Tripod Concept for Onshore Wind Turbine Towers," Energies, MDPI, vol. 14(18), pages 1-25, September.
  6. Roman Gabl & Samuel Draycott & Ajit C. Pillai & Thomas Davey, 2021. "Experimental Data of Bottom Pressure and Free Surface Elevation including Wave and Current Interactions," Data, MDPI, vol. 6(10), pages 1-13, September.
  7. Lingqian Meng & Hongyan Ding, 2022. "Experimental Study on the Contact Force between the Vessel and CBF in the Integrated Floating Transportation Process of Offshore Wind Power," Energies, MDPI, vol. 15(21), pages 1-10, October.
  8. Giannini, Gianmaria & Rosa-Santos, Paulo & Ramos, Victor & Taveira-Pinto, Francisco, 2022. "Wave energy converters design combining hydrodynamic performance and structural assessment," Energy, Elsevier, vol. 249(C).
  9. Srikanth Bashetty & Selahattin Ozcelik, 2021. "Review on Dynamics of Offshore Floating Wind Turbine Platforms," Energies, MDPI, vol. 14(19), pages 1-30, September.
  10. Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  11. Amina Bensalah & Georges Barakat & Yacine Amara, 2022. "Electrical Generators for Large Wind Turbine: Trends and Challenges," Energies, MDPI, vol. 15(18), pages 1-36, September.
  12. Li, Ming & Luo, Haojie & Zhou, Shijie & Senthil Kumar, Gokula Manikandan & Guo, Xinman & Law, Tin Chung & Cao, Sunliang, 2022. "State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
  13. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
  14. Wang, Yifei & Dong, Guangzhong & Yu, Jincheng & Qin, Caiyan & Feng, Yu & Deng, Yanfei & Zhang, Mingming, 2025. "In-situ green hydrogen production from offshore wind farms, a prospective review," Renewable Energy, Elsevier, vol. 239(C).
  15. Jiang, Zhiyu & Yang, Limin & Gao, Zhen & Moan, Torgeir, 2022. "Integrated dynamic analysis of a spar floating wind turbine with a hydraulic drivetrain," Renewable Energy, Elsevier, vol. 201(P1), pages 608-623.
  16. Bonaventura Tagliafierro & Madjid Karimirad & Iván Martínez-Estévez & José M. Domínguez & Giacomo Viccione & Alejandro J. C. Crespo, 2022. "Numerical Assessment of a Tension-Leg Platform Wind Turbine in Intermediate Water Using the Smoothed Particle Hydrodynamics Method," Energies, MDPI, vol. 15(11), pages 1-23, May.
  17. Arturo Y. Jaen-Cuellar & David A. Elvira-Ortiz & Roque A. Osornio-Rios & Jose A. Antonino-Daviu, 2022. "Advances in Fault Condition Monitoring for Solar Photovoltaic and Wind Turbine Energy Generation: A Review," Energies, MDPI, vol. 15(15), pages 1-36, July.
  18. Henrique Vieira & Rui Castro, 2025. "A Forward-Looking Assessment of Robotized Operation and Maintenance Practices for Offshore Wind Farms," Energies, MDPI, vol. 18(6), pages 1-25, March.
  19. Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), 2021. "Adapting to the Future: Maritime and City Logistics in the Context of Digitalization and Sustainability," Proceedings of the Hamburg International Conference of Logistics (HICL), Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management, volume 32, number 32.
  20. Vincent F. Yu & Thi Huynh Anh Le & Tai-Sheng Su & Shih-Wei Lin, 2021. "Optimal Maintenance Policy for Offshore Wind Systems," Energies, MDPI, vol. 14(19), pages 1-19, September.
  21. Stephan Oelker & Aljoscha Sander & Markus Kreutz & Abderrahim Ait-Alla & Michael Freitag, 2021. "Evaluation of the Impact of Weather-Related Limitations on the Installation of Offshore Wind Turbine Towers," Energies, MDPI, vol. 14(13), pages 1-12, June.
  22. Hunt, Julian David & Nascimento, Andreas & Nascimento, Nazem & Vieira, Lara Werncke & Romero, Oldrich Joel, 2022. "Possible pathways for oil and gas companies in a sustainable future: From the perspective of a hydrogen economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
  23. Weigell, Jürgen & Jahn, Carlos, 2021. "Literature review of installation logistics for floating offshore wind turbines," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Adapting to the Future: Maritime and City Logistics in the Context of Digitalization and Sustainability. Proceedings of the Hamburg International Conf, volume 32, pages 599-622, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
  24. Lerche, J. & Lorentzen, S. & Enevoldsen, P. & Neve, H.H., 2022. "The impact of COVID -19 on offshore wind project productivity – A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  25. Mousavi, Yashar & Bevan, Geraint & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Sliding mode control of wind energy conversion systems: Trends and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  26. Paweł Ligęza, 2021. "Basic, Advanced, and Sophisticated Approaches to the Current and Forecast Challenges of Wind Energy," Energies, MDPI, vol. 14(23), pages 1-10, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.