IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v6y2021i10p103-d646920.html
   My bibliography  Save this article

Experimental Data of Bottom Pressure and Free Surface Elevation including Wave and Current Interactions

Author

Listed:
  • Roman Gabl

    (School of Engineering, Institute for Energy Systems, FloWave Ocean Energy Research Facility, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK)

  • Samuel Draycott

    (Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M60 1QD, UK)

  • Ajit C. Pillai

    (Renewable Energy Group, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK)

  • Thomas Davey

    (School of Engineering, Institute for Energy Systems, FloWave Ocean Energy Research Facility, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK)

Abstract

Force plates are commonly used in tank testing to measure loads acting on the foundation of a structure. These targeted measurements are overlaid by the hydrostatic and dynamic pressure acting on the force plate induced by the waves and currents. This paper presents a dataset of bottom force measurement with a six degree-of-freedom force plate (AMTI OR6-7 1000, surface area 0.464 m × 0.508 m) combined with synchronised measurements of surface elevation and current velocity. The data cover wave frequencies between 0.2 to 0.7 Hz and wave directions between 0 ∘ and 180 ∘ . These variations are provided for current speeds of 0 and 0.2 m/s and a variation of the current in the absence of waves covering 0 to 0.45 m/s. The dataset can be utilised as a validation dataset for models predicting bottom pressure based on free surface elevation. Additionally, the dataset provides the wave- and current-induced load acting on the specific load cell at a fixed water depth of 2 m, which can subsequently be removed to obtain the often-desired measurement of structural loads.

Suggested Citation

  • Roman Gabl & Samuel Draycott & Ajit C. Pillai & Thomas Davey, 2021. "Experimental Data of Bottom Pressure and Free Surface Elevation including Wave and Current Interactions," Data, MDPI, vol. 6(10), pages 1-13, September.
  • Handle: RePEc:gam:jdataj:v:6:y:2021:i:10:p:103-:d:646920
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/6/10/103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/6/10/103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Zhiyu, 2021. "Installation of offshore wind turbines: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Donald R. Noble & Samuel Draycott & Anup Nambiar & Brian G. Sellar & Jeffrey Steynor & Aristides Kiprakis, 2020. "Experimental Assessment of Flow, Performance, and Loads for Tidal Turbines in a Closely-Spaced Array," Energies, MDPI, vol. 13(8), pages 1-17, April.
    3. Draycott, S. & Nambiar, A. & Sellar, B. & Davey, T. & Venugopal, V., 2019. "Assessing extreme loads on a tidal turbine using focused wave groups in energetic currents," Renewable Energy, Elsevier, vol. 135(C), pages 1013-1024.
    4. Draycott, S. & Steynor, J. & Nambiar, A. & Sellar, B. & Venugopal, V., 2020. "Rotational sampling of waves by tidal turbine blades," Renewable Energy, Elsevier, vol. 162(C), pages 2197-2209.
    5. Roman Gabl & Thomas Davey & Yu Cao & Qian Li & Boyang Li & Kyle L. Walker & Francesco Giorgio-Serchi & Simona Aracri & Aristides Kiprakis & Adam A. Stokes & David M. Ingram, 2020. "Experimental Force Data of a Restrained ROV under Waves and Current," Data, MDPI, vol. 5(3), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roman Gabl & Robert Klar & Thomas Davey & David M. Ingram, 2021. "Experimental Data of a Hexagonal Floating Structure under Waves," Data, MDPI, vol. 6(10), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marilou Jourdain de Thieulloy & Mairi Dorward & Chris Old & Roman Gabl & Thomas Davey & David M. Ingram & Brian G. Sellar, 2020. "Single-Beam Acoustic Doppler Profiler and Co-Located Acoustic Doppler Velocimeter Flow Velocity Data," Data, MDPI, vol. 5(3), pages 1-11, July.
    2. Lingqian Meng & Hongyan Ding, 2022. "Experimental Study on the Contact Force between the Vessel and CBF in the Integrated Floating Transportation Process of Offshore Wind Power," Energies, MDPI, vol. 15(21), pages 1-10, October.
    3. Giannini, Gianmaria & Rosa-Santos, Paulo & Ramos, Victor & Taveira-Pinto, Francisco, 2022. "Wave energy converters design combining hydrodynamic performance and structural assessment," Energy, Elsevier, vol. 249(C).
    4. Weigell, Jürgen & Jahn, Carlos, 2021. "Literature review of installation logistics for floating offshore wind turbines," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Adapting to the Future: Maritime and City Logistics in the Context of Digitalization and Sustainability. Proceedings of the Hamburg International Conf, volume 32, pages 599-622, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    5. Papi, F. & Bianchini, A., 2022. "Technical challenges in floating offshore wind turbine upscaling: A critical analysis based on the NREL 5 MW and IEA 15 MW Reference Turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Ramin Alipour & Roozbeh Alipour & Seyed Saeid Rahimian Koloor & Michal Petrů & Seyed Alireza Ghazanfari, 2020. "On the Performance of Small-Scale Horizontal Axis Tidal Current Turbines. Part 1: One Single Turbine," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
    7. Gambuzza, Stefano & Pisetta, Gabriele & Davey, Thomas & Steynor, Jeffrey & Viola, Ignazio Maria, 2023. "Model-scale experiments of passive pitch control for tidal turbines," Renewable Energy, Elsevier, vol. 205(C), pages 10-29.
    8. Srikanth Bashetty & Selahattin Ozcelik, 2021. "Review on Dynamics of Offshore Floating Wind Turbine Platforms," Energies, MDPI, vol. 14(19), pages 1-30, September.
    9. Lam, Raymond & Dubon, Sergio Lopez & Sellar, Brian & Vogel, Christopher & Davey, Thomas & Steynor, Jeffrey, 2023. "Temporal and spatial characterisation of tidal blade load variation for structural fatigue testing," Renewable Energy, Elsevier, vol. 208(C), pages 665-678.
    10. Mohammadi, S. & Hassanalian, M. & Arionfard, H. & Bakhtiyarov, S., 2020. "Optimal design of hydrokinetic turbine for low-speed water flow in Golden Gate Strait," Renewable Energy, Elsevier, vol. 150(C), pages 147-155.
    11. Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Li, Ming & Luo, Haojie & Zhou, Shijie & Senthil Kumar, Gokula Manikandan & Guo, Xinman & Law, Tin Chung & Cao, Sunliang, 2022. "State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    13. Jiang, Zhiyu & Yang, Limin & Gao, Zhen & Moan, Torgeir, 2022. "Integrated dynamic analysis of a spar floating wind turbine with a hydraulic drivetrain," Renewable Energy, Elsevier, vol. 201(P1), pages 608-623.
    14. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2022. "Tidal turbine performance and loads for various hub heights and wave conditions using high-frequency field measurements and Blade Element Momentum theory," Renewable Energy, Elsevier, vol. 200(C), pages 1548-1560.
    15. Vincent F. Yu & Thi Huynh Anh Le & Tai-Sheng Su & Shih-Wei Lin, 2021. "Optimal Maintenance Policy for Offshore Wind Systems," Energies, MDPI, vol. 14(19), pages 1-19, September.
    16. Stephan Oelker & Aljoscha Sander & Markus Kreutz & Abderrahim Ait-Alla & Michael Freitag, 2021. "Evaluation of the Impact of Weather-Related Limitations on the Installation of Offshore Wind Turbine Towers," Energies, MDPI, vol. 14(13), pages 1-12, June.
    17. Hunt, Julian David & Nascimento, Andreas & Nascimento, Nazem & Vieira, Lara Werncke & Romero, Oldrich Joel, 2022. "Possible pathways for oil and gas companies in a sustainable future: From the perspective of a hydrogen economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    18. Upma Singh & Mohammad Rizwan & Hasmat Malik & Fausto Pedro García Márquez, 2022. "Wind Energy Scenario, Success and Initiatives towards Renewable Energy in India—A Review," Energies, MDPI, vol. 15(6), pages 1-39, March.
    19. Arturo Ortega & Joseph Praful Tomy & Jonathan Shek & Stephane Paboeuf & David Ingram, 2020. "An Inter-Comparison of Dynamic, Fully Coupled, Electro-Mechanical, Models of Tidal Turbines," Energies, MDPI, vol. 13(20), pages 1-19, October.
    20. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:6:y:2021:i:10:p:103-:d:646920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.