IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v89y2016icp80-92.html
   My bibliography  Save this item

Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
  2. Liang, Jinping & Zhang, Ke & Al-Durra, Ahmed & Zhou, Daming, 2020. "A novel fault diagnostic method in power converters for wind power generation system," Applied Energy, Elsevier, vol. 266(C).
  3. Teng, Wei & Ding, Xian & Cheng, Hao & Han, Chen & Liu, Yibing & Mu, Haihua, 2019. "Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform," Renewable Energy, Elsevier, vol. 136(C), pages 393-402.
  4. Salcedo-Sanz, Sancho & Deo, Ravinesh C. & Cornejo-Bueno, Laura & Camacho-Gómez, Carlos & Ghimire, Sujan, 2018. "An efficient neuro-evolutionary hybrid modelling mechanism for the estimation of daily global solar radiation in the Sunshine State of Australia," Applied Energy, Elsevier, vol. 209(C), pages 79-94.
  5. Jin, Zhenglei & Xu, Qifa & Jiang, Cuixia & Wang, Xiangxiang & Chen, Hao, 2023. "Ordinal few-shot learning with applications to fault diagnosis of offshore wind turbines," Renewable Energy, Elsevier, vol. 206(C), pages 1158-1169.
  6. Liu, W.Y., 2017. "A review on wind turbine noise mechanism and de-noising techniques," Renewable Energy, Elsevier, vol. 108(C), pages 311-320.
  7. He, Deqiang & Liu, Chenyu & Jin, Zhenzhen & Ma, Rui & Chen, Yanjun & Shan, Sheng, 2022. "Fault diagnosis of flywheel bearing based on parameter optimization variational mode decomposition energy entropy and deep learning," Energy, Elsevier, vol. 239(PB).
  8. Liu, Dongdong & Cui, Lingli & Cheng, Weidong, 2023. "Fault diagnosis of wind turbines under nonstationary conditions based on a novel tacho-less generalized demodulation," Renewable Energy, Elsevier, vol. 206(C), pages 645-657.
  9. Pinjia Zhang & Delong Lu, 2019. "A Survey of Condition Monitoring and Fault Diagnosis toward Integrated O&M for Wind Turbines," Energies, MDPI, vol. 12(14), pages 1-22, July.
  10. Bahareh Tajiani & Jørn Vatn, 2023. "Adaptive remaining useful life prediction framework with stochastic failure threshold for experimental bearings with different lifetimes under contaminated condition," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1756-1777, October.
  11. Miao He & David He & Jae Yoon & Thomas J Nostrand & Junda Zhu & Eric Bechhoefer, 2019. "Wind turbine planetary gearbox feature extraction and fault diagnosis using a deep-learning-based approach," Journal of Risk and Reliability, , vol. 233(3), pages 303-316, June.
  12. Chen, Jinglong & Pan, Jun & Zhang, Chunlin & Luo, Xiaoyu & Zhou, Zitong & Wang, Biao, 2017. "Specialization improved nonlocal means to detect periodic impulse feature for generator bearing fault identification," Renewable Energy, Elsevier, vol. 103(C), pages 448-467.
  13. Zhaoyan Zhang & Shaoke Wang & Peiguang Wang & Ping Jiang & Hang Zhou, 2022. "Research on Fault Early Warning of Wind Turbine Based on IPSO-DBN," Energies, MDPI, vol. 15(23), pages 1-18, November.
  14. Liu, Hui & Yu, Chengqing & Wu, Haiping & Duan, Zhu & Yan, Guangxi, 2020. "A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting," Energy, Elsevier, vol. 202(C).
  15. Ruiz de la Hermosa González-Carrato, Raúl, 2017. "Sound and vibration-based pattern recognition for wind turbines driving mechanisms," Renewable Energy, Elsevier, vol. 109(C), pages 262-274.
  16. Pang, Yanhua & He, Qun & Jiang, Guoqian & Xie, Ping, 2020. "Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 161(C), pages 510-524.
  17. Lixiao Cao & Zheng Qian & Hamid Zareipour & David Wood & Ehsan Mollasalehi & Shuangshu Tian & Yan Pei, 2018. "Prediction of Remaining Useful Life of Wind Turbine Bearings under Non-Stationary Operating Conditions," Energies, MDPI, vol. 11(12), pages 1-20, November.
  18. Do, M. Hung & Söffker, Dirk, 2021. "State-of-the-art in integrated prognostics and health management control for utility-scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  19. Xu, Zifei & Mei, Xuan & Wang, Xinyu & Yue, Minnan & Jin, Jiangtao & Yang, Yang & Li, Chun, 2022. "Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors," Renewable Energy, Elsevier, vol. 182(C), pages 615-626.
  20. Kong, Yun & Qin, Zhaoye & Wang, Tianyang & Han, Qinkai & Chu, Fulei, 2021. "An enhanced sparse representation-based intelligent recognition method for planet bearing fault diagnosis in wind turbines," Renewable Energy, Elsevier, vol. 173(C), pages 987-1004.
  21. Kong, Yun & Wang, Tianyang & Chu, Fulei, 2019. "Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear," Renewable Energy, Elsevier, vol. 132(C), pages 1373-1388.
  22. Mingzhu Tang & Wei Chen & Qi Zhao & Huawei Wu & Wen Long & Bin Huang & Lida Liao & Kang Zhang, 2019. "Development of an SVR Model for the Fault Diagnosis of Large-Scale Doubly-Fed Wind Turbines Using SCADA Data," Energies, MDPI, vol. 12(17), pages 1-15, September.
  23. Menon, Muraleekrishnan & Ponta, Fernando L., 2017. "Dynamic aeroelastic behavior of wind turbine rotors in rapid pitch-control actions," Renewable Energy, Elsevier, vol. 107(C), pages 327-339.
  24. Yuri Merizalde & Luis Hernández-Callejo & Oscar Duque-Perez & Víctor Alonso-Gómez, 2019. "Maintenance Models Applied to Wind Turbines. A Comprehensive Overview," Energies, MDPI, vol. 12(2), pages 1-41, January.
  25. Miao, Yonghao & Zhao, Ming & Liang, Kaixuan & Lin, Jing, 2020. "Application of an improved MCKDA for fault detection of wind turbine gear based on encoder signal," Renewable Energy, Elsevier, vol. 151(C), pages 192-203.
  26. Wenxin Yu & Shoudao Huang & Weihong Xiao, 2018. "Fault Diagnosis Based on an Approach Combining a Spectrogram and a Convolutional Neural Network with Application to a Wind Turbine System," Energies, MDPI, vol. 11(10), pages 1-11, September.
  27. Chang, Yuanhong & Chen, Jinglong & Qu, Cheng & Pan, Tongyang, 2020. "Intelligent fault diagnosis of Wind Turbines via a Deep Learning Network Using Parallel Convolution Layers with Multi-Scale Kernels," Renewable Energy, Elsevier, vol. 153(C), pages 205-213.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.