IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v32y2007i15p2479-2490.html
   My bibliography  Save this item

Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Frost, Carwyn H. & Evans, Paul S. & Harrold, Magnus J. & Mason-Jones, Allan & O'Doherty, Tim & O'Doherty, Daphne M., 2017. "The impact of axial flow misalignment on a tidal turbine," Renewable Energy, Elsevier, vol. 113(C), pages 1333-1344.
  2. Zhang, Yuquan & Zang, Wei & Zheng, Jinhai & Cappietti, Lorenzo & Zhang, Jisheng & Zheng, Yuan & Fernandez-Rodriguez, E., 2021. "The influence of waves propagating with the current on the wake of a tidal stream turbine," Applied Energy, Elsevier, vol. 290(C).
  3. Payne, Grégory S. & Stallard, Tim & Martinez, Rodrigo, 2017. "Design and manufacture of a bed supported tidal turbine model for blade and shaft load measurement in turbulent flow and waves," Renewable Energy, Elsevier, vol. 107(C), pages 312-326.
  4. Zeiner-Gundersen, Dag Herman, 2014. "A vertical axis hydrodynamic turbine with flexible foils, passive pitching, and low tip speed ratio achieves near constant RPM," Energy, Elsevier, vol. 77(C), pages 297-304.
  5. Pacheco, A. & Ferreira, Ó., 2016. "Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario," Applied Energy, Elsevier, vol. 180(C), pages 369-385.
  6. Zeiner-Gundersen, Dag Herman, 2015. "A novel flexible foil vertical axis turbine for river, ocean, and tidal applications," Applied Energy, Elsevier, vol. 151(C), pages 60-66.
  7. O'Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony & Kennedy, David M., 2015. "Hydrodynamic performance prediction of a tidal current turbine operating in non-uniform inflow conditions," Energy, Elsevier, vol. 93(P2), pages 2483-2496.
  8. Kennedy, Ciaran R. & Jaksic, Vesna & Leen, Sean B. & Brádaigh, Conchúr M.Ó., 2018. "Fatigue life of pitch- and stall-regulated composite tidal turbine blades," Renewable Energy, Elsevier, vol. 121(C), pages 688-699.
  9. Huang, B. & Kanemoto, T., 2015. "Multi-objective numerical optimization of the front blade pitch angle distribution in a counter-rotating type horizontal-axis tidal turbine," Renewable Energy, Elsevier, vol. 81(C), pages 837-844.
  10. Bahaj, AbuBakr S., 2011. "Generating electricity from the oceans," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3399-3416, September.
  11. Yeo, Eng Jet & Kennedy, David M. & O'Rourke, Fergal, 2022. "Tidal current turbine blade optimisation with improved blade element momentum theory and a non-dominated sorting genetic algorithm," Energy, Elsevier, vol. 250(C).
  12. Shirasawa, Katsutoshi & Tokunaga, Kohei & Iwashita, Hidetsugu & Shintake, Tsumoru, 2016. "Experimental verification of a floating ocean-current turbine with a single rotor for use in Kuroshio currents," Renewable Energy, Elsevier, vol. 91(C), pages 189-195.
  13. Abutunis, Abdulaziz & Hussein, Rafid & Chandrashekhara, K., 2019. "A neural network approach to enhance blade element momentum theory performance for horizontal axis hydrokinetic turbine application," Renewable Energy, Elsevier, vol. 136(C), pages 1281-1293.
  14. Faizan, Muhammad & Badshah, Saeed & Badshah, Mujahid & Haider, Basharat Ali, 2022. "Performance and wake analysis of horizontal axis tidal current turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 184(C), pages 740-752.
  15. Nachtane, M. & Tarfaoui, M. & Goda, I. & Rouway, M., 2020. "A review on the technologies, design considerations and numerical models of tidal current turbines," Renewable Energy, Elsevier, vol. 157(C), pages 1274-1288.
  16. Li, Liang & Gao, Yan & Yuan, Zhiming & Day, Sandy & Hu, Zhiqiang, 2018. "Dynamic response and power production of a floating integrated wind, wave and tidal energy system," Renewable Energy, Elsevier, vol. 116(PA), pages 412-422.
  17. Wang, Wen-Quan & Yin, Rui & Yan, Yan, 2019. "Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine," Renewable Energy, Elsevier, vol. 133(C), pages 91-102.
  18. Hashemi, M. Reza & Neill, Simon P. & Robins, Peter E. & Davies, Alan G. & Lewis, Matt J., 2015. "Effect of waves on the tidal energy resource at a planned tidal stream array," Renewable Energy, Elsevier, vol. 75(C), pages 626-639.
  19. Luznik, Luksa & Flack, Karen A. & Lust, Ethan E. & Taylor, Katharin, 2013. "The effect of surface waves on the performance characteristics of a model tidal turbine," Renewable Energy, Elsevier, vol. 58(C), pages 108-114.
  20. Brown, S.A. & Ransley, E.J. & Xie, N. & Monk, K. & De Angelis, G.M. & Nicholls-Lee, R. & Guerrini, E. & Greaves, D.M., 2021. "On the impact of motion-thrust coupling in floating tidal energy applications," Applied Energy, Elsevier, vol. 282(PB).
  21. Aguayo, Maichel M. & Fierro, Pablo E. & De la Fuente, Rodrigo A. & Sepúlveda, Ignacio A. & Figueroa, Dante M., 2021. "A mixed-integer programming methodology to design tidal current farms integrating both cost and benefits: A case study in the Chacao Channel, Chile," Applied Energy, Elsevier, vol. 294(C).
  22. Glecelyn M. Galvez & Karl Andrie M. Olivar & Francis Rey G. Tolentino & Louis Angelo M. Danao & Binoe E. Abuan, 2022. "Finite Element Analysis of Different Infill Patterns for 3D Printed Tidal Turbine Blade," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
  23. Attukur Nandagopal, Rajaram & Narasimalu, Srikanth, 2020. "Multi-objective optimization of hydrofoil geometry used in horizontal axis tidal turbine blade designed for operation in tropical conditions of South East Asia," Renewable Energy, Elsevier, vol. 146(C), pages 166-180.
  24. Walker, Jessica M. & Flack, Karen A. & Lust, Ethan E. & Schultz, Michael P. & Luznik, Luksa, 2014. "Experimental and numerical studies of blade roughness and fouling on marine current turbine performance," Renewable Energy, Elsevier, vol. 66(C), pages 257-267.
  25. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
  26. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
  27. Li, Liang & Yuan, Zhiming & Gao, Yan, 2018. "Maximization of energy absorption for a wave energy converter using the deep machine learning," Energy, Elsevier, vol. 165(PA), pages 340-349.
  28. Chul H. Jo & Do Y. Kim & Su J. Hwang & Chan H. Goo, 2016. "Shape Design of the Duct for Tidal Converters Using Both Numerical and Experimental Approaches (pre-2015)," Energies, MDPI, vol. 9(3), pages 1-8, March.
  29. Abuan, Binoe E. & Howell, Robert J., 2019. "The performance and hydrodynamics in unsteady flow of a horizontal axis tidal turbine," Renewable Energy, Elsevier, vol. 133(C), pages 1338-1351.
  30. Leidy Tatiana Contreras & Omar Dario Lopez & Santiago Lain, 2018. "Computational Fluid Dynamics Modelling and Simulation of an Inclined Horizontal Axis Hydrokinetic Turbine," Energies, MDPI, vol. 11(11), pages 1-23, November.
  31. Xu, Jian & Wang, Longyan & Yuan, Jianping & Shi, Jiali & Wang, Zilu & Zhang, Bowen & Luo, Zhaohui & Tan, Andy C.C., 2023. "A cost-effective CNN-BEM coupling framework for design optimization of horizontal axis tidal turbine blades," Energy, Elsevier, vol. 282(C).
  32. Sheng, Qihu & Jing, Fengmei & Zhang, Liang & Zhou, Nianfu & Wang, Shuqi & Zhang, Zhiyang, 2016. "Study of the hydrodynamic derivatives of vertical-axis tidal current turbines in surge motion," Renewable Energy, Elsevier, vol. 96(PA), pages 366-376.
  33. Ahmed, U. & Apsley, D.D. & Afgan, I. & Stallard, T. & Stansby, P.K., 2017. "Fluctuating loads on a tidal turbine due to velocity shear and turbulence: Comparison of CFD with field data," Renewable Energy, Elsevier, vol. 112(C), pages 235-246.
  34. Ilias Gavriilidis & Yuner Huang, 2021. "Finite Element Analysis of Tidal Turbine Blade Subjected to Impact Loads from Sea Animals," Energies, MDPI, vol. 14(21), pages 1-20, November.
  35. Nuernberg, M. & Tao, L., 2018. "Experimental study of wake characteristics in tidal turbine arrays," Renewable Energy, Elsevier, vol. 127(C), pages 168-181.
  36. Amelio, Mario & Barbarelli, Silvio & Florio, Gaetano & Scornaienchi, Nino Michele & Minniti, Giovanni & Cutrupi, Antonino & Sánchez-Blanco, Manuel, 2012. "Innovative tidal turbine with central deflector for the exploitation of river and sea currents in on-shore installations," Applied Energy, Elsevier, vol. 97(C), pages 944-955.
  37. Li, Dong & Wang, Shujie & Yuan, Peng, 2010. "An overview of development of tidal current in China: Energy resource, conversion technology and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2896-2905, December.
  38. Li, Wei & Zhou, Hongbin & Liu, Hongwei & Lin, Yonggang & Xu, Quankun, 2016. "Review on the blade design technologies of tidal current turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 414-422.
  39. Wang, Long & Wang, Tongguang & Wu, Jianghai & Chen, Guoping, 2017. "Multi-objective differential evolution optimization based on uniform decomposition for wind turbine blade design," Energy, Elsevier, vol. 120(C), pages 346-361.
  40. Morris, C.E. & O'Doherty, D.M. & O'Doherty, T. & Mason-Jones, A., 2016. "Kinetic energy extraction of a tidal stream turbine and its sensitivity to structural stiffness attenuation," Renewable Energy, Elsevier, vol. 88(C), pages 30-39.
  41. Pinon, Grégory & Mycek, Paul & Germain, Grégory & Rivoalen, Elie, 2012. "Numerical simulation of the wake of marine current turbines with a particle method," Renewable Energy, Elsevier, vol. 46(C), pages 111-126.
  42. Le, Tuyen Quang & Ko, Jin Hwan, 2015. "Effect of hydrofoil flexibility on the power extraction of a flapping tidal generator via two- and three-dimensional flow simulations," Renewable Energy, Elsevier, vol. 80(C), pages 275-285.
  43. Mycek, Paul & Gaurier, Benoît & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2014. "Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine," Renewable Energy, Elsevier, vol. 66(C), pages 729-746.
  44. Modali, Pranav K. & Vinod, Ashwin & Banerjee, Arindam, 2021. "Towards a better understanding of yawed turbine wake for efficient wake steering in tidal arrays," Renewable Energy, Elsevier, vol. 177(C), pages 482-494.
  45. Chen, Long & Lam, Wei-Haur, 2015. "A review of survivability and remedial actions of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 891-900.
  46. Arturo Ortega & Joseph Praful Tomy & Jonathan Shek & Stephane Paboeuf & David Ingram, 2020. "An Inter-Comparison of Dynamic, Fully Coupled, Electro-Mechanical, Models of Tidal Turbines," Energies, MDPI, vol. 13(20), pages 1-19, October.
  47. Yong Ma & Chao Hu & Yulong Li & Rui Deng, 2018. "Research on the Hydrodynamic Performance of a Vertical Axis Current Turbine with Forced Oscillation," Energies, MDPI, vol. 11(12), pages 1-20, November.
  48. Nasteho Djama Dirieh & Jérôme Thiébot & Sylvain Guillou & Nicolas Guillou, 2022. "Blockage Corrections for Tidal Turbines—Application to an Array of Turbines in the Alderney Race," Energies, MDPI, vol. 15(10), pages 1-18, May.
  49. Milne, I.A. & Day, A.H. & Sharma, R.N. & Flay, R.G.J., 2016. "The characterisation of the hydrodynamic loads on tidal turbines due to turbulence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 851-864.
  50. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
  51. Jo, Chul-Hee & Lee, Jun-Ho & Rho, Yu-Ho & Lee, Kang-Hee, 2014. "Performance analysis of a HAT tidal current turbine and wake flow characteristics," Renewable Energy, Elsevier, vol. 65(C), pages 175-182.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.