IDEAS home Printed from https://ideas.repec.org/r/eee/intfor/v30y2014i3p572-584.html

Forecasting macroeconomic variables using collapsed dynamic factor analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Cyrille Lenoel & Garry Young, 2020. "Real-time turning point indicators: Review of current international practices," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2020-05, Economic Statistics Centre of Excellence (ESCoE).
  2. Francisco Corona & Pilar Poncela & Esther Ruiz, 2017. "Determining the number of factors after stationary univariate transformations," Empirical Economics, Springer, vol. 53(1), pages 351-372, August.
  3. Wang, Xue & Fan, Li-Wei & Zhang, Hongyan, 2023. "Policies for enhancing patent quality: Evidence from renewable energy technology in China," Energy Policy, Elsevier, vol. 180(C).
  4. Francisco Corona & Graciela González-Farías & Pedro Orraca, 2017. "A dynamic factor model for the Mexican economy: are common trends useful when predicting economic activity?," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 26(1), pages 1-35, December.
  5. Bi, Jian-Wu & Liu, Yang & Li, Hui, 2020. "Daily tourism volume forecasting for tourist attractions," Annals of Tourism Research, Elsevier, vol. 83(C).
  6. Scott Brave & R. Andrew Butters, 2014. "Nowcasting Using the Chicago Fed National Activity Index," Economic Perspectives, Federal Reserve Bank of Chicago, issue Q I, pages 19-37.
  7. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
  8. Wanger, Susanne & Weigand, Roland & Zapf, Ines, 2014. "Revision der IAB-Arbeitszeitrechnung 2014 : Grundlagen, methodische Weiterentwicklungen sowie ausgewählte Ergebnisse im Rahmen der Revision der Volkswirtschaftlichen Gesamtrechnungen," IAB-Forschungsbericht 201409, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
  9. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
  10. Samuel Bates & Cheikh Tidiane Ndiaye, 2014. "Economic Growth from a Structural Unobserved Component Modeling: The Case of Senegal," Economics Bulletin, AccessEcon, vol. 34(2), pages 951-965.
  11. Li, Mengheng & Koopman, Siem Jan & Lit, Rutger & Petrova, Desislava, 2020. "Long-term forecasting of El Niño events via dynamic factor simulations," Journal of Econometrics, Elsevier, vol. 214(1), pages 46-66.
  12. Liu, Zhenqing & Luo, Yi & Duan, Mohan, 2025. "Macroeconomic factors, industrial enterprises, and debt default prediction: Based on the VAR-GRU model," Finance Research Letters, Elsevier, vol. 78(C).
  13. Basistha, Arabinda, 2025. "A Markov-switching dynamic factor framework for dating global economic cycles," Journal of International Money and Finance, Elsevier, vol. 157(C).
  14. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
  15. Blasques, Francisco & Hoogerkamp, Meindert Heres & Koopman, Siem Jan & van de Werve, Ilka, 2021. "Dynamic factor models with clustered loadings: Forecasting education flows using unemployment data," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1426-1441.
  16. Michael T. Kiley, 2020. "Financial Conditions and Economic Activity: Insights from Machine Learning," Finance and Economics Discussion Series 2020-095, Board of Governors of the Federal Reserve System (U.S.).
  17. Noordegraaf-Eelens, L.H.J. & Franses, Ph.H.B.F., 2014. "Do loss profiles on the mortgage market resonate with changes in macro economic prospects, business cycle movements or policy measures?," Econometric Institute Research Papers EI 2014-08, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  18. Yoshihiro Ohtsuka, 2018. "Large Shocks and the Business Cycle: The Effect of Outlier Adjustments," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(1), pages 143-178, April.
  19. Tobias Hartl, 2020. "Macroeconomic Forecasting with Fractional Factor Models," Papers 2005.04897, arXiv.org.
  20. Matteo Luciani & Madhavi Pundit & Arief Ramayandi & Giovanni Veronese, 2018. "Nowcasting Indonesia," Empirical Economics, Springer, vol. 55(2), pages 597-619, September.
  21. Blasques, F. & Koopman, S.J. & Mallee, M. & Zhang, Z., 2016. "Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 405-417.
  22. Irma Hindrayanto & Siem Jan Koopman & Jasper de Winter, 2014. "Nowcasting and Forecasting Economic Growth in the Euro Area using Principal Components," Tinbergen Institute Discussion Papers 14-113/III, Tinbergen Institute.
  23. Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
  24. Bragoli, Daniela, 2017. "Now-casting the Japanese economy," International Journal of Forecasting, Elsevier, vol. 33(2), pages 390-402.
  25. Alina Stundziene & Vaida Pilinkiene & Jurgita Bruneckiene & Andrius Grybauskas & Mantas Lukauskas & Irena Pekarskiene, 2024. "Future directions in nowcasting economic activity: A systematic literature review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(4), pages 1199-1233, September.
  26. Maldonado, Javier & Ruiz Ortega, Esther, 2017. "Accurate Subsampling Intervals of Principal Components Factors," DES - Working Papers. Statistics and Econometrics. WS 23974, Universidad Carlos III de Madrid. Departamento de Estadística.
  27. Bennedsen, Mikkel & Hillebrand, Eric & Koopman, Siem Jan, 2021. "Modeling, forecasting, and nowcasting U.S. CO2 emissions using many macroeconomic predictors," Energy Economics, Elsevier, vol. 96(C).
  28. Ardia, David & Bluteau, Keven & Boudt, Kris, 2019. "Questioning the news about economic growth: Sparse forecasting using thousands of news-based sentiment values," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1370-1386.
  29. Bernd Schwaab & Siem Jan Koopman & André Lucas, 2017. "Global Credit Risk: World, Country and Industry Factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 296-317, March.
  30. Weigand Roland & Wanger Susanne & Zapf Ines, 2018. "Factor Structural Time Series Models for Official Statistics with an Application to Hours Worked in Germany," Journal of Official Statistics, Sciendo, vol. 34(1), pages 265-301, March.
  31. Heil, Thomas L.A. & Peter, Franziska J. & Prange, Philipp, 2022. "Measuring 25 years of global equity market co-movement using a time-varying spatial model," Journal of International Money and Finance, Elsevier, vol. 128(C).
  32. Borus Jungbacker & Siem Jan Koopman, 2008. "Likelihood-based Analysis for Dynamic Factor Models," Tinbergen Institute Discussion Papers 08-007/4, Tinbergen Institute, revised 20 Mar 2014.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.