IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v34y2006i11p1299-1309.html
   My bibliography  Save this item

Transition to hydrogen-based transportation in China: Lessons learned from alternative fuel vehicle programs in the United States and China

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jingna Kou & Wei Li & Rui Zhang & Dingxiong Shi, 2023. "Hydrogen as a Transition Tool in a Fossil Fuel Resource Region: Taking China’s Coal Capital Shanxi as an Example," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
  2. Kelley, Scott & Kuby, Michael, 2013. "On the way or around the corner? Observed refueling choices of alternative-fuel drivers in Southern California," Journal of Transport Geography, Elsevier, vol. 33(C), pages 258-267.
  3. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Price promises, trust deficits and energy justice: Public perceptions of hydrogen homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
  4. Lu, Jun & Zahedi, Ahmad & Yang, Chengshi & Wang, Mingzhou & Peng, Bo, 2013. "Building the hydrogen economy in China: Drivers, resources and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 543-556.
  5. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations," Energy Policy, Elsevier, vol. 38(1), pages 406-418, January.
  6. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin & Yue, Wen Long & Zou, Xin, 2019. "Multi-criteria analysis of policies for implementing clean energy vehicles in China," Energy Policy, Elsevier, vol. 129(C), pages 826-840.
  7. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2013. "Modelling the transport system in China and evaluating the current strategies towards the sustainable transport development," Energy Policy, Elsevier, vol. 58(C), pages 347-357.
  8. Demeulenaere, Xavier, 2019. "The use of automotive fleets to support the diffusion of Alternative Fuel Vehicles: A Rapid Evidence Assessment of barriers and decision mechanisms," Research in Transportation Economics, Elsevier, vol. 76(C).
  9. Heewon Lee, 2021. "Private Sector Engagement in the Self-Governance of Urban Sustainable Infrastructure: A Study on Alternative Fueling Infrastructure in the United States," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
  10. Collantes, Gustavo, 2008. "The dimensions of the policy debate over transportation energy: The case of hydrogen in the United States," Energy Policy, Elsevier, vol. 36(3), pages 1059-1073, March.
  11. Collantes, Gustavo Oscar, 2008. "The dimensions of the policy debate over transportation energy: The case of hydrogen in the United States," Institute of Transportation Studies, Working Paper Series qt91f3d1ns, Institute of Transportation Studies, UC Davis.
  12. Ren, Jingzheng & Gao, Suzhao & Tan, Shiyu & Dong, Lichun, 2015. "Hydrogen economy in China: Strengths–weaknesses–opportunities–threats analysis and strategies prioritization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1230-1243.
  13. Isaac, N. & Saha, A.K., 2021. "Analysis of refueling behavior of hydrogen fuel vehicles through a stochastic model using Markov Chain Process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
  14. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles," Energy Policy, Elsevier, vol. 35(11), pages 5865-5875, November.
  15. Binz, Christian & Truffer, Bernhard & Li, Li & Shi, Yajuan & Lu, Yonglong, 2012. "Conceptualizing leapfrogging with spatially coupled innovation systems: The case of onsite wastewater treatment in China," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 155-171.
  16. Pfoser, Sarah & Schauer, Oliver & Costa, Yasel, 2018. "Acceptance of LNG as an alternative fuel: Determinants and policy implications," Energy Policy, Elsevier, vol. 120(C), pages 259-267.
  17. Y. Li & C.J.M. Kool & P.J. Engelen, 2016. "Hydrogen-Fuel Infrastructure Investment with Endogenous Demand: A Real Options Approach," Working Papers 16-12, Utrecht School of Economics.
  18. López Cascales, J.J. & Juan-Segovia, M.C. & Ibáñez Molina, J. & Sánchez Vera, J. & Vivo Vivo, P.M., 2015. "Environmental impact associated with the substitution of internal combustion vehicles by fuel cell vehicles refueled with hydrogen generated by electrolysis using the power grid. An estimation focused," Renewable Energy, Elsevier, vol. 77(C), pages 79-85.
  19. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions," Energy Policy, Elsevier, vol. 38(8), pages 3943-3956, August.
  20. Chang, Le & Li, Zheng & Gao, Dan & Huang, He & Ni, Weidou, 2007. "Pathways for hydrogen infrastructure development in China: Integrated assessment for vehicle fuels and a case study of Beijing," Energy, Elsevier, vol. 32(11), pages 2023-2037.
  21. Chunguang Bai & Behnam Fahimnia & Joseph Sarkis, 2017. "Sustainable transport fleet appraisal using a hybrid multi-objective decision making approach," Annals of Operations Research, Springer, vol. 250(2), pages 309-340, March.
  22. Leung, Vivian, 2011. "Slow diffusion of LPG vehicles in China--Lessons from Shanghai, Guangzhou and Hong Kong," Energy Policy, Elsevier, vol. 39(6), pages 3720-3731, June.
  23. Collantes, Gustavo O, 2008. "The dimensions of the policy debate over transportation energy: The case of hydrogen in the United States," Institute of Transportation Studies, Working Paper Series qt82j0z800, Institute of Transportation Studies, UC Davis.
  24. Ye Li & Clemens Kool & Peter-Jan Engelen, 2020. "Analyzing the Business Case for Hydrogen-Fuel Infrastructure Investments with Endogenous Demand in The Netherlands: A Real Options Approach," Sustainability, MDPI, vol. 12(13), pages 1-22, July.
  25. Yan, Xiaoyu & Crookes, Roy J., 2009. "Reduction potentials of energy demand and GHG emissions in China's road transport sector," Energy Policy, Elsevier, vol. 37(2), pages 658-668, February.
  26. Kelley, Scott & Kuby, Michael, 2017. "Decentralized refueling of compressed natural gas (CNG) fleet vehicles in Southern California," Energy Policy, Elsevier, vol. 109(C), pages 350-359.
  27. Wang, Hongxia & Fang, Hong & Yu, Xueying & Wang, Ke, 2015. "Development of natural gas vehicles in China: An assessment of enabling factors and barriers," Energy Policy, Elsevier, vol. 85(C), pages 80-93.
  28. Nithin Isaac & Akshay K. Saha, 2023. "A Review of the Optimization Strategies and Methods Used to Locate Hydrogen Fuel Refueling Stations," Energies, MDPI, vol. 16(5), pages 1-16, February.
  29. Khan, Muhammad Imran & Yasmin, Tabassum & Shakoor, Abdul, 2015. "Technical overview of compressed natural gas (CNG) as a transportation fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 785-797.
  30. Ren, Jingzheng & Gao, Suzhao & Tan, Shiyu & Dong, Lichun & Scipioni, Antonio & Mazzi, Anna, 2015. "Role prioritization of hydrogen production technologies for promoting hydrogen economy in the current state of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1217-1229.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.